

Proteomics

INNOMOL WORKSHOP

1. RATIONALE AND OBJECTIVES

1.1. RATIONALE

The proteomics is scientific discipline of characterizing and analysing the proteome. The term proteome is described as entire protein complement expressed by the genome in the lifetime of a given cell, tissue or organism, including isoforms, polymorphisms and modifications, protein-protein interactions and the structural description of proteins. Proteomics encompasses the identification, characterisation and quantification of the proteome.

The dominant proteome analysis workflow utilizes few important steps: protein extraction from the cells, protein/peptide separation, site-specific protein enzymatic digestion and mass spectrometry (MS)/bioinformatics analysis.

The extraction of proteins from the cells is a critical step for establishing a stable proteome and this is important experimental step in proteomics studies. The extraction of soluble proteins is simply performed by lysing the cells and collecting the supernatant. Different cell lysis methods are easily accessible in literature data.

Protein separation by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) provides high-resolution separation of complex protein mixtures. 2-D PAGE can potentially separate several thousand proteins in a single experiment (on average, between 5000 and 15000 per cell type). During 2-D PAGE the proteins are firstly separated according to their pl (first dimension), followed by their separation according to their molecular weight (second dimension). Alternatively, a mixture of proteins or peptides can be separated by high performance liquid chromatography (HPLC). HPLC separation is based on the differences in interactions of compounds (analytes) between two phases, mobile (liquid) and stationary, as the compounds travel through column under a high pressure. In reverse-phase HPLC mode separation is performed according to hydrophobicity of analytes (proteins/peptides). The HPLC systems are capable to detect proteins of very low abundance and allow the analysis of complex protein/peptide mixtures in a single run. When HPLC separation method ends with mass spectrometry/bioinformatics analysis, the method is known as Shot-gun proteomics.

On the other hand, protein spots separated by 2-D PAGE are excised from the gels, properly rinsed, and in-gel digested, while in HPLC separation the proteins are usually digested insolution and then separated. Both methods (2-D PAGE and HPLC) in conjunction with MS analysis and followed by peptide mass database search represent very powerful tools for protein identification and quantification.

MS is one of the most sensitive methods for the structural characterisation and protein identification. MS technique measures the mass to charge ratios (m/z) of gas-phase ions with extremely high sensitivity and resolution. The most common ionisation techniques are electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI), which allow the transfer of large, polar, thermally labile biomolecules into the gaseous phase for mass

analysis (e.g. peptides). Further, peptides can be fragmented in the mass spectrometer by tandem mass spectrometry (MS/MS), and the resulting MS/MS spectra are usually used to retrieve the corresponding peptide sequence from the database. Protein identification is accomplished by matching the list of observed m/z in MS and MS/MS spectra with a calculated list of all the expected peptide masses for each entry in the protein database.

Proteomics can be viewed as an array of biological or clinical assays and have a great impact on biology and medicine. Proteomics technology is applied to various standard biochemical and molecular biology studies: biomarker discovery, protein/protein interactions, biotypization, cell functioning, proteins or "small molecules" mechanism of action and so on.

1.2. OBJECTIVES

The objectives of this Innomol FP7-REGPOT-2012-2013 - Proteomics workshop course include:

- understanding of the fundamentals of mass spectrometry, with a focus on different peptides/proteins separation techniques (multidimensional nano- and capillary-liquid chromatography/1-D and 2-D SDS-PAGE),
- cell lysate handling (sample homogenization) and protein/peptide enrichment strategies,
- peptide and protein analysis by MALDI-TOF/TOF and ESI-Q-TOF,
- bioinformatics data-analysis, followed by database search, *de novo* sequencing and high-throughput data processing.

2. MATERIALS AND METHODS

2.1. MATERIALS

2.1.1 LABORATORY EQUIPMENT

2.0 mL PP tubes, Eppendorf, Germany 1.5 mL microcentrifuge tubes, Eppendorf, Germany Tube rack for 1.5 mL-2.0 mL test tubesTube holder cool pack for 1.5 or 2.0 mL tubes Vortexer, IKA, USA Tissue homogenizer (TissueRuptor and TissueRuptor disposable probes), Quiagen, Germany ZipTip C4, Millipore, USA Analytical balance Kern, ALS 220-4N, Germany Thermomixer, Eppendorf AG 22331, Germany Concentrator 5301 (SpeedVac), Eppendorf, Germany Ultrasonic bath Sonorex, Bandelin, Germany Laboratory centrifuge Centric 400, Tehtnica, Slovenia Centrifuge 5415 R, Eppendorf, Germany Power supply – Power PAC 3000, BIO-RAD, USA ReadyStripTM IPG Strip 17 cm, pH 3-10NL, BIO-RAD, USA Electrode Wicks, Bio-Rad, USA PROTEAN IEF Cell system, Bio-Rad, USA PROTEAN II xi 2-D cell, Bio-Rad, USA LC Column C₁₈, 300 µm x 150 mm I.D., 3.5 µm particle size, Symmetry 300TM, Waters, USA LC Trap column, 180 µm x 10 mm ID, 3.5 µm particle size, Symmetry C₁₈, Waters, USA LC Analytical column, 75 μm x 100 mm ID, 1.7 μm particle size, BEH dC₁₈, Waters, USA Spin filters 0.22 µm, cellulose acetate membranes, Agilent, USA Extraction manifold SPE system, Waters, USA SPE 1 mL Diol cartridge, 100 mg Sorbent per Cartridge, Sep-Pak[®] Diol 1 cc Vac cartridge, Waters, USAF Household microwave oven, HeatWave compact 800W Electrolux

2.1.2 SCIENTIFIC INSTRUMENTS

BioPhotometer, Eppendorf, Germany VersaDoc™ 3000 imaging system, Bio-Rad, SAD Liquid chromatography system: Capillary LC, Waters, USA Tempo[™] LC MALDI Spotting System, Applied Biosystems, MDS Sciex, USA Mass spectrometer: 4800 MALDI TOF/TOF[™] Analyzer, Applied Biosystems, MDS Sciex, USA Liquid chromatography system: nanoACQUITY UPLC, Waters, USA Mass spectrometer: SYNAPT G2-Si Mass Spectrometer, Waters, USA

2.1.3 CHEMICALS

Acetonitrile (ACN), Ultra gradient HPLC grade, JT Baker, USA Ultrapure water, TOC < 5 ppb, resistivity < 18.2 M Ω cm Ammonium carbonate, Riedel-de Haen, Germany Ammonium sulfate, 99.5 %, Kemika, Croatia Ammonium formate, for HPLC, ≥ 99.0% Sigma-Aldrich, USA Trypsin, Merck, Germany Trifluoracetic acid (TFA), Merck, Germany Glacial acetic acid, min. 99.5 %, GRAM-MOL, d.o.o., Croatia Methanol, MERCK, Germany, gradient grade for LC Coomassie Brilliant Blue G250, Bio-Rad, USA Trizma[®] base, ≥ 99.9 %, Sigma, USA Hydrochloric acid, (37%; φ), p.a., Kemika, Croatia Glycine, for electrophoresis, Sigma, USA 30% Acrylamide/Bis solution, 29:1 (Acrylamide: N,N´-methylene-bis-acrylamide), Bio-Rad, USA Sodium dodecyl sulfate, 95 % based on total alkyl sulfate, Sigma, USA Ammonium persulfate (APS), for electrophoresis ≥98 %, Sigma, USA N,N,N`,N`-tetramethyl-ethylendiamine (TEMED), for electrophoresis ≥ 98 %, Sigma, USA Urea, USP testing spec., Sigma, USA Thiourea, ReagentPlus ≥99 %, Sigma, USA CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate), Sigma, USA Iodoacetamide, Sigma, USA Dithiothreitol (DTT), Sigma, USA Bromophenol Blue, Sigma, USA Glycerol, redistilled, Kemika, Croatia Agarose, Sigma, USA Phosphoric acid (H_3PO_4), (85 %; ϕ), p.a., Kemika, Croatia α-cyano-4-hydroxycinnamic acid (CHCA), Fluka, Switzerland Mineral oil, biotechnology grade, Bio-Rad, USA DNase I, Thermoscientific, USA

RNase A, Roche, Germany

Protease Inhibitor cocktail tablets, Complete Mini, EDTA-free, Roche, Germany

Triton X-100, Sigma-Aldrich, USA

Mag-Trypsin, trypsin immobilized on magnetic beads, Clontech, USA

Endoproteinase GluC (V8), sequencing grade, Roche, USA

CAF-/CAF+ reagent (5-formylbenzene-1,3-disulfonic acid disodium salt hydrate), p.a.

synthetic product, Ruđer Bošković Institute

Sodium cyanoborohydride, for synthesis, Merck, Germany

Potasium dihydrogen phosphate, p.a., Kemika, Croatia

2.2. SOLUTION PREPARATION

2.2.1 CELL LYSIS

Cell lysis buffer 1 (25 mM NH₄HCO₃ + 0.1% Triton-X-100)

Dissolve 198 mg of NH_4HCO_3 in a total volume of 100 mL 0.1% Triton-X-100 (v/v).

Cell lysis buffer 2 (25 mM (NH₄)₂CO₃ + 0.1% Triton-X-100)

Dissolve 240.2 mg of $(NH_4)_2CO_3$ in a total volume of 100 mL 0.1% Triton-X-100 (v/v).

2.2.2. DETERMINATION OF PROTEIN CONCENTRATION

Bradford reagent

Dissolve 10 mg of Commassie Brilliant Blue G-250 in a total volume of 100 mL solution containing 85% water, 10% phosphoric acid and 5% ethanol (v/v/v).

2.2.3 2-D SDS-PAGE

1.5 M Tris-HCl buffer

Dissolve 18.2 g Trizma base in a total volume of 100 mL water. Adjust pH to pH 8.8 using 6 M HCl.

30% Acrylamide / bisacrylamide

Dissolve 29.2 g of acrylamide and 0.8 g of N,N´-methylen-bis acrylamide in a total volume of 100 mL water.

10% (w/v) Ammonium persulfate (APS)

Dissolve 100 mg of APS in a total volume of 1 mL water.

10% (w/v) Sodium dodecyl sulfate (SDS)

Dissolve 10 g of SDS in a total volume of 100 mL water.

M1 Buffer

Dissolve components in water according to Table 1.

Table 1. M1 stock buffer

Component	Quantity
Urea	4.2042 g
Thiourea	1.522 g

CHAPS	0.4 g
Water	Up to 10 mL

Aliquot stock solution and store it at -20 °C. Immediately prior to use, mix 857.2 μ L of M1 buffer stock solution with 142.8 μ L of 7× protease inhibitor cocktail and 10 mg of DTT to get ready to use M1 buffer.

Equilibration buffer

Prepare the buffer by combining all reagents according to Table 2.

Table 2. Equilibration buffer

Component	Quantity
1.5 M Tris-HCl, pH 8.8	10 mL
6 M Urea	72.07 g
Glycerol 99.5%	60.3 mL
2% SDS	4 g
Bromophenol Blue	0.1 µg
Water	Up to 200 mL

12% Acrylamid/Bis solution

Prepare monomer solution by combining all reagents according to Table 3.

Component	Volume
30% Acrylamid/Bis	60 mL
Water	50.2 mL
1.5 M Tris-HCl, pH 8.8	37.5 mL
10% SDS	1.5 mL
10% APS	750 μL
TEMED	75 μL

Table 3. 12 % Acrylamid/Bis solution

10× Running buffer, pH 8.3

Dissolve components in water according to Table 4.

Table 4. 10× Running buffer

Component	Quantity
Trizma base	16 g

Glycine	72.1 g
SDS	5 g
H ₂ O	Up to 500 mL

0.5% Agarose

Put the components in water according to Table 5. and dissolve in microwave oven.

Table 5. 0.5% Agarose

Component	Quantity
0.5% Agarose	0.5 g
Bromophenol blue 0.0002%	200 µg
Running buffer (5x)	20 mL
Water	80 mL

Coomassie blue staining solution

Prepare stock solution according to Table 6.

Table 6. Coomassie blue staining stock solution.

Component	Quantity	
Coomassie Brilliant Blue G250	2 g	
Phosphoric acid	47 mL	
Ammonium sulfate	200 g	
Water	Up to 2 L	

Prepare working solution by mixing stock solution and methanol in 5:1 ratio (v/v).

Gel storage solution

Prepare solution containing 2% glacial acetic acid in water (v/v).

Destaining solution

Prepare solution containing 10% glacial acetic acid, 40% methanol and 50% water (v/v/v).

2.2.4 PROTEIN DIGESTION, PEPTIDE EXTRACTION AND PURIFICATION

2.2.4.1 In-solution digestion

Tryptic buffer, 25 mM NH₄HCO₃, pH 7.8

Dissolve 198 mg of NH_4HCO_3 in a total volume of 100 mL water. Adjust pH to 7.8 using 10 % glacial acetic acid.

Trypsin stock solution (1 mg/mL)

Dissolve lyophilized trypsin (50 μ g) sequencing grade in 50 μ L of water.

V8 protease buffer - 25 mM (NH₄)₂CO₃, pH 7.8

Dissolve 240.2 mg of $(NH_4)_2CO_3$ in a total volume of 100 mL water. Adjust pH to 7.8 using 10% glacial acetic acid.

V8 protease stock solution (1 mg/mL)

Dissolve lyophilized V8 protease (50 μ g) sequencing grade in 50 μ L of water.

2.2.4.2 Mag-Trypsin protein digestion (trypsin immobilized on magnetic beads)

Washing buffer (0.1M NaHCO₃, pH 8.3)

Dissolve 840 mg of NaHCO₃ in a total volume of 100 mL water.

Digestion buffer (0.1M NaHCO₃, pH 8.3, 1 M Urea)

Dissolve 840 mg of NaHCO $_3$ and 600.6 mg of urea in a total volume of 100 mL water.

2.2.4.3 In-gel digestion and extraction

50 mM NH₄HCO₃ buffer, pH 7.8

Dissolve 396 mg of NH_4HCO_3 in a total volume of 100 mL water.

ACN:50 mM NH₄HCO₃ (50:50 v/v)

Mix 5 mL of ACN with 5 mL of of 50 mM NH_4HCO_3 pH 7.8.

Extraction solution (ACN: aqueous solution of 5% TFA (50:50 v/v)

Mix 5 mL of ACN with 5 mL of aqueous solution of 5% TFA (v/v).

2.2.4.4 Protein purification

Solutions for Zip-Tip C4 and SPE

ACN: aqueous solution of 0.1% TFA (80:20 v/v) ACN: aqueous solution of 0.1% TFA (50:50 v/v) Aqueous solution of 0.1% TFA (v/v)

2.2.5 PEPTIDE DERIVATIZATION

Derivatization buffer (10 mM KH₂PO₄, pH 5)

Dissolve 34 mg of KH_2PO_4 in a total volume of 25 mL water. Adjust pH with H_3PO_4 to pH 5.

Derivatization solution

Dissolve 8 mg of CAF-/CAF+ reagent (5-formylbenzene-1,3-disulfonic acid disodium salt hydrate) and 12 mg of NaBH₃CN in 1 mL of derivatization buffer.

2.2.6 LIQUID CHROMATOGRAPHY

2.2.6.1 Capillary liquid chromatography (CapLC)

Mobile phase A

Prepare aqueous solution of 0.1% TFA.

Mobile phase B

ACN:aqueous solution of 0.1% TFA (80:20 v/v).

2.2.6.2 2-dimensional ultra-performance liquid chromatography (2-D UPLC)

Mobile phase A1

Prepare 20 mM ammonium formate, pH 10 by dissolving 126 mg of ammonium formate in a total volume of 100 mL water. Adjust pH with NaOH to pH 10.

Mobile phase B1

ACN.

Mobile phase A2

Prepare aqueous solution of 0.1% formic acid (v/v).

Mobile phase B2

Prepare ACN containing 0.1% formic acid (v/v).

2.2.7 MASS SPECTROMETRY

CHCA matrix

Prepare 5 mg/mL of CHCA matrix by dissolving 5 mg of CHCA in 1 mL of ACN:water (50:50 v/v).

2.3. PROTOCOLS

2.3.1 PROTEIN SAMPLE PREPARATION

Note: This protocol contains 2-DE and LC steps denoted with small letters in addition (optional_{2-DE} or optional_{LC}).

2.3.1.1 Removing cell suspension growth medium

- Centrifuge cell suspension at 2000 rcf for 15 min and aspirate the supernatant.
- Wash the pellet three times in 1.5 mL of 25 mM NH₄HCO₃.

2.3.2.2 Cell lysis

- Resuspend the pellet in 400 μ L of lysis buffer 1 or lysis buffer 2. Keep the tubes incubated on cool pack.
- Proceed to cell rupture using TissueRuptor and disposable probe (Figure 1) with the following settings:
 - Power: Position II
 - o Grinding cycle: 45 seconds ON / 45 seconds OFF
 - Total grinding times: 5-6 cycles

Figure 1. TissueRuptor

2.3.2.3 Blocking endoprotease activity (optional_{LC})

• Put the sample in boiling water for 3 minutes to inhibit endoprotease activity.

2.3.2.4 Obtaining solution of proteins

• Centrifuge at 4000 g at 4°C for 15 min and transfer the supernatant to a clean 1.5 mL tube.

2.3.2.5 Nucleic acid removal (optional2.DE)

- Add 1 μ L of RNase A and 10 μ L of DNase I in the sample.
- Vortex and incubate in thermomixer (25 °C, 500 rpm) for 20 min.

2.3.2.6 Determination of protein concentration

- Make the triplicate serial dilution of the sample using water as diluent.
- Mix 10 μ L of each dilution with 100 μ L of Bradford reagent.
- Make blank using the tube which contains no protein.
- Adjust the spectrophotometer to a wavelength of 595 nm, make blank and read absorbance at 595 nm wavelength.

2.3.2.7 Protein precipitation (optional_{2-DE})

- Mix 4 volumes acetone to 1 volume protein solution and incubate overnight at -20°C.
- Centrifuge at 4,000 rpm at 4°C for 30 min and discard the supernatant.
- Resuspend precipitated proteins in M1 buffer and incubate at 35°C until the proteins are completely dissolved.

2.3.2. PROTEIN SEPARATION BY TWO-DIMENSIONAL SODIUM DODECYL SULFATE POLYACRYLAMIDE GEL ELECTROPHORESIS (2-D SDS-PAGE), IN-GEL DIGESTION AND PEPTIDE PURIFICATION

Note: Isolate proteins from the cells as was described above, but include Nucleic Acid Removing step (Step V) and Protein Precipitation Step (Step VII).

2.3.2.1 2-D SDS-PAGE

Note: Protein Separation by 2-D SDS-PAGE will be done before practicum starts.

Isoelectric Focusing (IEF)

 Assemble PROTEAN IEF Cell system (Bio-Rad) for isoelectric focusing (Figure 2) according to manufacturer's instructions. (see <u>http://www.bio-rad.com/webroot/web/pdf/lsr/literature/4006164B.pdf</u>).

Figure 2. PROTEAN IEF cell system.

- Select immobilized pH gradient (IPG) strip with the optimal pH range.
- Resuspend precipitated proteins in 200 µL of M1 buffer and determine protein concentration.
- Dilute the volume of protein sample that contains 700 μg of total proteins in M1 buffer up to 350 $\mu L.$
- Pipette the protein solution into the loading wells of the focusing tray and cover it with IPG strip.
- Apply mineral oil overlay IPG strip and close the lid of IEF tray.
- Place the tray on the Peltier platform, select the method (Table 7) and start the run (the program include a pause step after rehydration).
- After rehydration, pre-wet electrode wicks in Milli-Q water and insert them directly on top of both electrode wires in the focusing tray just prior to isoelectric focusing and continue the run.

Phase	Phase Voltage [V] Durati	
Rehydration	50	840 min
Focusing		
S 1	200	75 min
S 2	500	15 min
S 3	500	60 min
S 4	1000	15 min
S 5	1000	60 min
S 6	7000	240 min
S 7	7000	90 000 Vh
S 8	500	1440 min

Table 7. Programs for rehydration and isoelectric focusing.

IPG Strip Equilibration

- Put the strip in equilibration buffer (Table 2) containing 10 mg/mL DTT and soak for 15 minutes.
- Discard the buffer and put the strip in the equilibration buffer containing 25 mg/mL iodoacetamide and soak for 15 minutes.

SDS-PAGE

• Assemble PROTEAN II xi 2-D cell (Bio-Rad) (Figure 3) according to manufacturer's instructions. (see http://www.natur.cuni.cz/biologie/servisni-laboratore/genomicka-a-proteomicka-laborator/soubory/protean-manual).

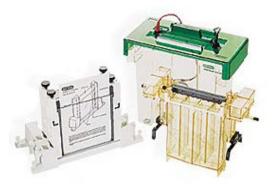
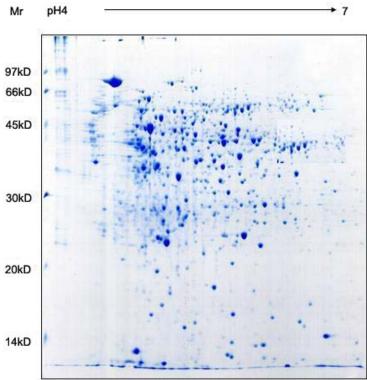


Figure 3. PROTEAN IEF Cell system.

- Prepare the 12% Acrylamid/Bis solution (Table 3) by combining all reagents except APS and TEMED and mix it well.
- Add APS and TEMED to the solution, and pour it between glass plates using a glass pipette. Immediately overlay with *n*-butanol.
- Allow the gel to polymerize for 45 minutes to 1 hour, and then completely rinse off the *n*-butanol from the gel with distilled water.
- Remove gel sandwich from casting stand and install it in the electrophoresis apparatus.
- Remove the remaining water from the top of the gel by inserting a small piece of filter paper between the glass slides.
- Immerse the IPG strip in 1x running buffer (Table 4) and place it onto the top of the gel (between the glass plates).
- Overlay with 0.5% molten agarose (Table 5). Fill the electrophoresis apparatus with 1× running buffer (Table 6), and run electrophoresis according to program in Table 8.

Step	Current /	Duration
1	1.5	1 h
2	20	600 VHs
3	30	5 h

Table 8. Program for 2-D SDS-PAGE


- After completion of electrophoresis, transfer the gel to Commassie blue staining solution (Table 6) for 16 h and destain it in water afterwards.
- Store the gel in the gel store solution.

Processing 2-D SDS-PAGE gel

• Scan the gel with VersaDoc[™] 3000 imaging system (Figure 4) and analyse it with PDQuest 2-D Analysis Software. Example of 2-DE SDS-PAGE gel is shown in Figure 5.

Figure 4. VersaDoc[™] 3000 imaging system.

Commassie Blue Stain bacteria 2D Gel Electrophoresis

Figure 5. Example of Coomassie blue stained 2-D gel.

2.3.2.2 In-gel digestion

Gel Excision and Rinsing

- Excise the protein spot of the interest from the gel, place it in 1 mL of destaining solution and incubate in thermomixer (40° C, 700 rpm) for 3 hours. After incubation, discard the rest of the destaining solution.
- Add 0.5 mL of buffer 50 mM NH₄HCO₃, pH 7.8 to gel slice and incubate in thermomixer (25°C, 700 rpm) for 5 minutes.
- Discard the rest of the buffer (repeat this cycle twice).
- Add fresh 0.5 mL of 50 mM NH₄HCO₃, pH 7.8 buffer to gel slice and incubate in thermomixer (25°C, 700 rpm) for additional 30 minutes. Discard the rest of the buffer.
- Add 0.5 mL of solution 50 mM NH₄HCO₃, pH 7.8 / ACN (50:50 v/v) to gel slice and incubate in thermomixer (25°C, 700 rpm) for 30 minutes. After incubation, discard the rest of the solution.
- Add 100 μL of ACN to gel slice and incubate in thermomixer (25°C, 700 rpm) for 5 minutes. After incubation, discard the rest of ACN.
- Dry the gel slice in SpeedVac.

In-gel Digestion

• Add 10 μ L of trypsin (final concentration 20 μ g/mL) to dried gel slice and incubate in thermomixer at 37 C and 650 rpm for 18 hours.

Peptide Extraction

- After in-gel digestion, remove the enzyme buffer, place it in a clean Eppendorf tube and dry in SpeedVac.
- Add 10 μL of extraction solution to remaining gel slices and incubate for 30 minutes in ultrasonic bath. In addition, incubate gel samples in thermomixer (25°C and 500 rpm) for 15 min. Combine extracts with accompanying dried peptides and dry in SpeedVac.

2.3.2.3 Peptide Purification

- Resuspend dried peptides in 10 µL of aqueous solution of 0.1% TFA.
- Condition each ZipTip (Figure 6.):
 - \circ 3 × ACN: aqueous solution of 0.1% TFA (80:20 v/v)
 - o 3 × ACN: aqueous solution of 0.1% TFA (50:50 v/v)
 - \circ 3 × aqueous solution of 0.1% TFA (v/v)
- Bind the peptide sample:
 - Bind peptides to Zip Tip by aspirating and dispensing 10×.
- Rinse sample 5× with aqueous solution of 0.1% TFA.

- Elute samples with 10 μ L ACN: aqueous solution of 0.1% TFA (80:20 v/v). Dry peptide samples in SpeedVac.
- Resuspend dried peptide sample in 5 µL of CHCA matrix, deposit on MALDI plate and analyse by using MALDI-TOF/TOF mass spectrometer.

Figure 6. ZipTip pipette tips

2.3.3. PROTEIN IN-SOLUTION DIGESTION, PEPTIDE DERIVATIZATION AND PURIFICATION

Note: Isolate proteins from the cells as was described above but include Blocking endoprotease activity step (step III.).

2.3.3.1 Protein in-solution digestion

Use one of three suggested digestion procedures:

Mag-Trypsin (trypsin immobilized on magnetic beads)

- Mix protein solution with digestion buffer in 1:1 ratio.
- Heat the protein-buffer mixture at 80°C for 20 min.
- Prepare Mag-Trypsin suspension as follows:
 - A. Mix the Mag-Trypsin suspension and transfer 1 mL into a 1.5 mL tube. Place the tube on a magnetic separator and remove the storage buffer.
 - B. Remove the tube containing the beads from the separator and add 1 mL of Milli-Q water.
 - C. Mix and place the tube containing the beads on the separator. Remove water.
 - D. Repeat Steps B and C.
 - E. Remove the beads from separator and add 1 mL of wash buffer.
 - F. Repeat Steps B and C with wash buffer instead of water.
- Add the protein sample to the Mag-Trypsin suspension and incubate with mixing at 37°C for 2 h.
- Once digestion is complete, place the tube on magnetic separator and collect the reaction mixture.

Standard in-solution tryptic digestion

- Add trypsin in ratio 50:1 (w/w) to protein sample.
- Incubate in thermomixer (37 °C, 700 rpm) for 18 h.

Standard in-solution V8 digestion

- Add V8 protease in ratio 50:1 (w/w) to protein sample.
- Incubate in thermomixer (25 °C, 700 rpm) for 18 h.

2.3.3.2 Peptide derivatization

- Mix digested protein sample with derivatization solution in ratio 1:4.
- Place the tube in the holder (e.g. styrofoam) and perform the derivatization in a household microwave oven at 90W for 10 minutes.

2.3.3.3 Peptide purification

Solid Phase Extraction (SPE) – optional

- Purify the peptides after trypsin digestion and/or derivatization on Diol cartridges using vacuum manifold SPE system.
- Condition the Diol cartridges in three steps:
 - 1) Aspirate and dispense to waste three times with 0.5 mL of ACN:aqueous solution of 0.1% ammonium formate (80:20 v/v).
 - 2) Aspirate and dispense to waste three times with 0.5 mL of ACN:aqueous solution of 0.1% ammonium formate (50:50 v/v).
 - 3) Aspirate and dispense to waste three times with 0.5 mL of an aqueous solution of 0.1% ammonium formate (v/v).
- Load the peptide sample solution onto the cartridge and wash five times with 0.5 mL aqueous solution of 0.1% ammonium formate (v/v).
- Elute the peptides from the column to a clean 1.5 mL tube with 0.35 mL of ACN:aqueous solution of 0.2% ammonium formate (80:20 v/v).
- Evaporate the eluting solution to dryness in vacuum centrifuge.

2.3.3.4 Sample filtration – optional

• Filter the sample before loading LC column by passing it through cellulose acetate spin filter 0.22 μm using low-speed centrifugation (e.g at 4000 rpm for 30 s).

2.3.4. PEPTIDE SEPARATION BY LIQUID CHROMATOGRAPHY

2.3.4.1 Peptide Separation by Capillary Liquid Chromatography (CapLC)

The CapLC system equipped with a Photodiode Array (PDA) detector coupled to TempoTM LC MALDI spotter is used for peptide separation and collection directly onto the MALDI plate.

Perform the chromatographic separation on a silica based LC column C18, 300 μm x 150 mm I.D., and 3.5 μm particle size at 30°C. Set the flow rate to 2 μL/min and injection volume to 8 μL. Vial temperature is maintained at 5°C in the autosampler tray. Eluted peptides are detected by UV absorbance at 280 nm. Program the 50 min gradient elution to increase the percentage of solvent B from 5% to 80% over 35 min and then to condition the column back to the initial conditions until completion of the run. Set complete gradient conditions following the Table 9.

Time (min)	A (%)	B (%)
0	95	5
7	95	5
35	20	80
40	95	5
50	95	5

Table 9. Complete gradient conditions.

 Set the spotter make-up flow to 2 μL/min (5 mg/mL CHCA matrix). Example of typical CapLC chromatogram is shown in Figure 7.

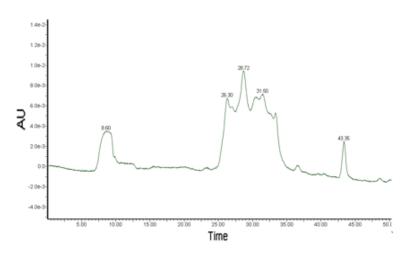


Figure 7. Example of typical CapLC chromatogram.

2.3.4.2 Peptide separation by Ultra Performance Liquid Chromatography (UPLC) 2-D method

The nanoACQUITY UPLC (Figure 8) system equipped with a TUV detector, Sample Manager and two Binary Solvent Managers is used for 2-D peptide separation. The nanoACQUITY UPLC System with 2-D technology runs with two reversed-phase separations at high and low pH, optionally strong cation exchange (SCX) followed by reversed-phase separations.

The nanoACQUITY UPLC is directly coupled to the mass spectrometer SYNAPT G2-Si.

Figure 8. *nano*ACQUITY UPLC.

- For first dimension (reversed phase or ion exchange), perform the chromatographic separation on a silica based LC column C18, 180 μm x 10 mm ID, 3.5 μm particle size or SCX based column 50 μm x 23.5 mm ID, 3.5 μm and set appropriate flow rate (e.g. 2-15 μL/min). Program the 20 min gradient elution to increase the percentage of solvent B from 5% to 11%.
- For second dimension (peptide separation), perform the chromatographic separation on a silica based LC column C18, 75 μ m x 100 mm ID, 1.7 μ m particle size and set the flow rate to 250 nL/min. Program the 30 min gradient elution to increase the percentage of solvent B from 5% to 80%.
- Inject the sample on the first-dimension column (peptide trap column, RP column 1) at pH 10 to wash unwanted solutes to waste. The first-dimension binary solvent manager (BSM2) elutes analytes (peptides) from RP column 1 to a mixing tee. The second-dimension binary solvent manager (BSM1) takes sample (peptides) from the first dimension and adjusts the pH from 10 to 2 while decreasing the organic content to trap the sample on the trapping column. The second-dimension BSM1 takes over the separation at pH 2 for high-resolution MS analyses. Eluted peptides are detected by UV absorbance at 280 nm. Example of chromatograms is shown in Figure 9.

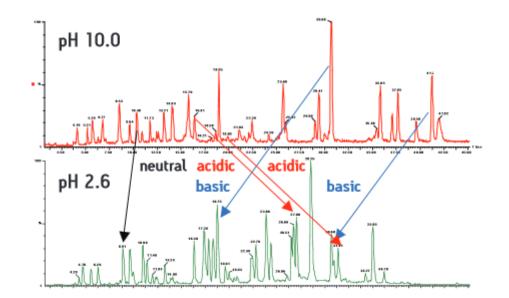


Figure 9. Comparison of peptide elution at pH 10.0 (top) and pH 2.6 (bottom) showing good UPLC chromatographic resolution and change in elution order.

2.3.5. MASS SPECTROMETRY

2.3.5.1 MALDI-TOF/TOF mass spectrometry

Use ions derived from the trypsin auto-digestion for external calibration of mass spectrometer in positive ion mode.

Use ions derived from the trypsin auto-digestion with CAF-/CAF+ derivatization for external calibration in negative ion mode according to Table 10.

<i>m/z</i> (Da)			
MS		MSMS	
Positive	Negative	Positive	Negative
1045.564	1090.4554	110.072	548.100
2211.104	2459.0459	551.258	1027.313
3161.496		1091.549	1368.508
		1695.798	1796.674

Table 10. Calibration standard.

MS acquisition

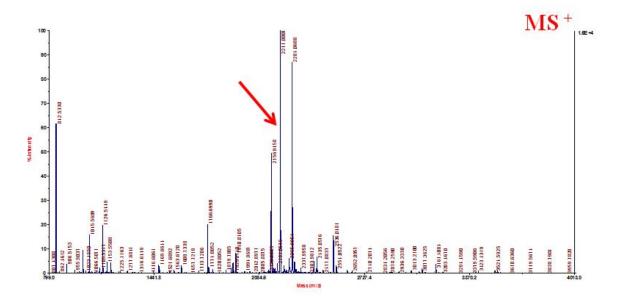

- MS acquisition is performed on a MALDI TOF/TOF 4800 Plus analyzer (Figure 10) equipped with a 200 Hz, 355 nm neodymium-doped yttrium aluminum garnet Nd:YAG laser. Ions are analyzed in reflectron positive or negative (for derivatized peptides) ion mode. The instrument parameters are set using the 4000 Series Explorer software version 3.5.3 (Applied Biosystems, USA). Mass spectra are obtained by averaging 1800 laser shots covering a mass range of *m/z* 1000 to 4000.
- MS/MS acquisition is achieved by 1kV collision energy in positive ion mode. Derivatized
 peptides are analyzed in negative than in positive ion mode without usage of collision
 gas (*de novo* sequencing). The same precursor ions generated by negative or positive ion
 MS were analyzed in negative and/or positive MS/MS.

Figure 10. 4800 Plus MALDI TOF/TOF Analyser.

Analysis parameters

- MS analysis parameters
 Mode: Detection of positive/negative ions
 Mirror: Reflectron
 Number of laser shots per spectrum: 1000
 Mass range: 900 4000 Da
 Ions retention time: 500 ns
- MSMS analysis parameters
 Mode: Detection of positive/negative ions
 Mirror: Reflectron
 Number of laser shots per spectrum: 1600
 lons retention time: 80 ns

Example of MS and MS/MS spectra is shown in Figures 11 and Figure 12.

Figure 11. MALDI-TOF/TOF MS positive spectrum of the peptides in the m/z range between 799 and 4013. Peptide peak m/z 2211.0007 is marked with red arrow.

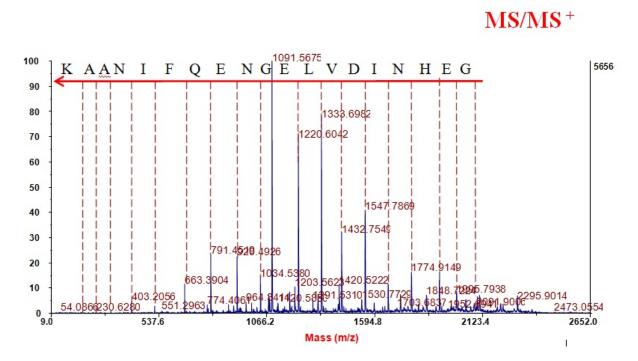


Figure 12. MALDI-TOF/TOF MS/MS positive spectrum of precursor ion at *m/z* 2211.0007 assigned to amino acid sequence LGEHNIDVLEGNEQFINAAK.

To check the amino acid sequence LGEHNIDVLEGNEQFINAAK, the peptide can be fragmented *in silico* using "Protein Prospector" program (Figure 13.) which can be accessed on the web page http://prospector.ucsf.edu/prospector/mshome.htm.

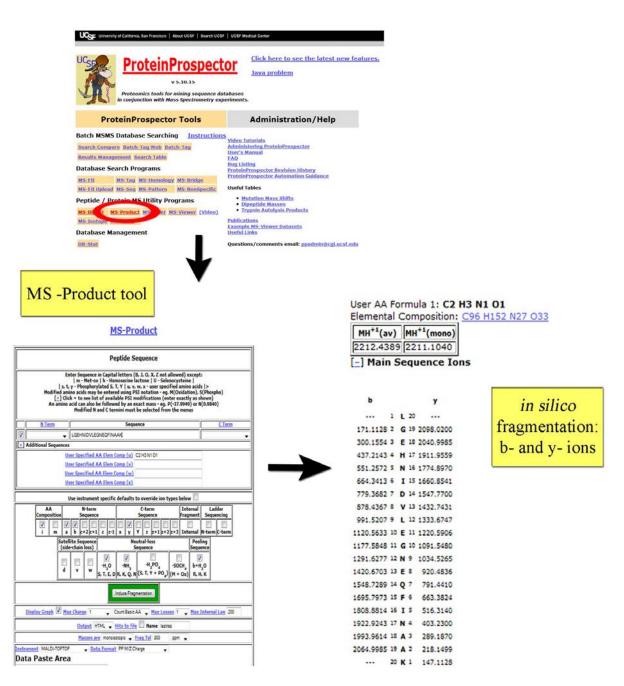


Figure 13. Example of *in silico* fragmented peptide LGEHNIDVLEGNEQFINAAK using "Protein Prospector" program.

2.3.5.2 ESI-qTOF mass spectrometry

After peptide separation by nanoACQUITY system, peptides are delivered to the ESI-qTOF mass spectrometer via NanoLockSpray interface using the auxiliary pump of nanoACQUITY system.

- MS acquisition is performed with ESI-qTOF SYNAPT G2-Si mass spectrometer (Figure 14). Ions are analyzed in positive and negative electrospray (ESI+ and ESI-) modes. The instrument parameters are set using the Mass Lynx software version 4.1. SCN902 (Waters, USA). Mass spectra are obtained in a mass range of *m/z* 1000 to 4000.
- Peptide fragmentation is performed in the trap collision cell with argon as the collision gas in ESI+ and ESI- modes. The voltage on the collision cell was adjusted with mass and charge to give a distribution of fragment ions across the mass scale (CE values: 80-120).

The ion source conditions:

- Temperature: 80 °C
- o Nitrogen flow: 0.7 Bar
- o Infusion needle potential: 1.2 kV
- Cone voltage: 30
- RF-1 voltage 150 V

Figure 14. SYNAPT G2-Si mass spectrometer.

2.3.6. SPECTRA PROCESSING AND DE NOVO SEQUENCING

2.3.6.1 Protein Pilot (Mascot search engine)

For each MS and MS/MS spectrum, software named Protein Pilot is used to determine which peptide sequence in a database gives the best match. Each entry in the database is digested *in silico*, using the known specificity of the enzyme, and the masses of the intact peptides are calculated. If the calculated mass of a peptide matches that of an observed peptide, the masses of the expected fragment ions are calculated and compared with the experimental values.

Because the data in each MS/MS spectrum correspond to an isolated peptide, it makes no difference whether the original sample was a single protein or a mixture. Individual peptide sequences are identified, then the set of peptide sequences is used to infer which proteins may have been present. Unless a peptide is unique to one particular protein, there may be some ambiguity as to which protein it originated from. Mascot method is shown in Figure 15.

Mascot® Method		
Mascot Method:	Mascot Method-4800	Delete
-Mascot Server: Icmsm	ascot —	
Database:	UniProtKB-SwissProt	Top Hits to Report: AUTO
Taxonomy:	All entries	•
Enzyme:	Trypsin	Maximum Missed Cleavages: 1
Fixed Modifications (2):	Met->Hse (C-term M) Met->Hsl (C-term M) Methyl (C-term) Methyl (DE) Methylthio (C)	Variable Modifications(3): ITRAQ4plex (N-term) ITRAQ4plex (Y) ITRAQ8plex (N-term) ITRAQ8plex (Y)
Protein Mass:	kDa	MS/MS Fragment Tolerance: 0.2 Da
Precursor Tolerance:	35 ppm	Monoisotopic Mass O Average Mass
Peptide Charge:	1+	Instrument: MALDI-TOF-TOF
L		Save As Cancel

Figure 15. Search parameters of MS/MSMS spectra using Mascot method.

Search parameters:

a. Database: National Center for Biotechnology Information (NCBI)

Choose protein database that will be used for peptide matching. The National Center for Biotechnology Information in the USA (<u>http://www.ncbi.nlm.nih.gov/</u>) houses a series of databases that contain sequences in the ubiquitous and non-redundant FASTA format.

b. Taxonomy: enter particular organism or taxonomic rank.

If a database contains taxonomy information, use this to restrict the search to entries for a particular organism or taxonomic rank.

c. Mass tolerance

The search engine supports separate mass tolerances for precursors and fragments since many instruments may have very different accuracies for MS and MS/MS. Used instruments have the m/z accuracy of up to 0.3 both in MS and MS/MS ion mode.

d. Enzyme: enter the enzyme you used for protein digestion.

Setting the number of allowed missed cleavage sites to zero simulates a limit digest. If you are confident that the digest was perfect, with no partial fragments present, this will give maximum discrimination. But, if experience shows that the digest mixtures usually include some partials (peptides with missed cleavage sites) you should choose a setting of 1, or maybe 2 missed cleavage sites.

Post-Translational Modifications: phosphorylation, oxidation, deamination...
 In database searching, modifications are handled in two ways. First, there are the quantitative modifications, usually called fixed or static. An example would be the efficient alkylation of cysteine. Since all cysteines are modified, this is effectively just a change in the mass of cysteine. It carries no penalty in terms of search speed or specificity.

In contrast, most post-translational modifications do not apply to all instances of a residue. For example, phosphorylation might affect just one serine in a peptide containing many serines. Non-quantitative modifications, usually called variable or differential, are expensive in the sense that they increase the time taken for a search and reduce its specificity.

2.3.6.2 ProteinReader (software developed by "Ruđer Bošković" Institute and Faculty of Food Technology and Biotechnology, University of Zagreb)

Protein Reader is a program that identifies an organism based on MS and MS/MS spectra. By searching the internal database (consisted of tryptic peptides of proteins taken from nrNCBI database) program identifies the organism on the basis of identified proteins that are specific for a particular organism. The named software has the ability to perform database match or *de novo* sequencing analysis.

a. Database Match

ProteinReader matches peaks from MS/MS⁻ and MS/MS⁺ spectra along with MS⁻ data against NCBInr database to identify peptides/proteins. Processed and assembled data represents identified proteins and assigned species. Identifying the same peptide from MS/MS⁻ and MS/MS⁺ spectra of the same precursor mass is referred as Sure Shot and it significantly increases reliability of matched result. Based on the number of matched peptides (primarily on quantitative number of Sure Shots), ProteinReader is able to

unambiguously determinate the species that is present in the NCBInr database (more than 3000 species). Sure Shot does not rely on probabilistic scoring algorithms used in similar database match search engines (e.g. MASCOT, PEAKS). It is a simple amino acid overlap reading between MS/MS⁻ and MS/MS⁺ spectra (from N-to C-terminus and back from C- to N-terminus, respectively).

Database Match Analysis			
	New a	nalyses	
MS peptide tolerance (m/z)	þ.3		
b-ions tolerance (m/z)	0.3	Exclusion list	
y-ions tolerance (m/z)	0.3		
Minimum sequence coverage in the row (%)			
Maximum peptides per MS/MS	4000		
Minimum aa in the row	6		
Use best relH % from one MSMS hits	0.0		
Use new algorith	hm with relH for calculate best hit.		
Use LMP. First best species:	10		
Gel based	10		
Filetr by Taxonomy			
Taxonomy tree viewer			
Filter By Divisions			
Bacteria Invertebrates Mammals Phages Plants Primates Rodents Synthetic Unassigned Viruses Vertebrates Environmental samples Resistance Target		Remove exclusion	Exclusion list manager
			Run Cancel

Use parameters shown in Figure 16 to perform Database Match search.

Figure 16. Search parameters of MS and MS/MS spectra using ProteinReader Database Match.

b. De novo Sequencing

Once ProteinReader Database Match identifies the species, *de novo* algorithm reads the amino acid sequence (\geq 5 amino acids in a series) from MS/MS⁻ and MS/MS⁺ spectra and makes alignment with protein sequences of the selected species in NCBInr database. Since *de novo* reading algorithm does not follow database match probabilistic logic it can be considered as independent and orthogonal peptide/protein identifier.

Use parameters shown in Figure 17 to perform *de novo* sequencing.

Anchor algorithm Number of generated queries % diregarded peaks out of spectrum margins 1 Mott intensive peaks selected 200 Anchor algorithm (negative and positive) 5 Banched anchor 4 R, K + H2O Ø Bight-left algorithm (negative) F, K + H2O Bight-left algorithm (negative) R, K + H2O Bight-left algorithm (negative) R Bight-left algorithm (negative)<	60 De Novo Reading Ar	nalysis	Name of Street, or other	of the local division of the local divisiono		_ 🗆 X
Most intensive peaks selected 200 Right-left algorithm (negative) 5 Anchor length (as) 4 Anchor algorithm (positive) 5 Branched anchor 4 S,T - H2O V Right-left algorithm (negative) 8 5 7 Branched left 4 Minimum query length (as) 2 Database match parameters Taxonomy search 55/2 MS/MS peptide tolerance (m/2) 0.3 Select organism Exclusion BLAST parameters	Anchor algorithm		Number of	generated queries		
Anchor length (a) Branched enchor Right-Left algorithm (negative) Branched left 4 Right-Left algorithm (negative) Branched left 4 Nnimum query length (a) 2 Database match parameters MS/MS peptide tolerance (m/2) 0.3 Elect organism Esclerichia coli 562 RK MS/MS peptide tolerance (m/2) 0.8 ELAST parameters -blastp-short BLAST portimized for queries shorter than 30 residues E-value 200000 Window size 40 Word size 2 Threshold 11 Mat target sequence: 500 Gap costs extension 1 Select spot (total 71) 01 col 02 col 03 col 04 col 05	% disregarded peaks	out of spectrum margins	1 Anchor algo	orithm (negative and positive)	5	
Branched anchor Branched anchor Right-left algorithm (negative) Branched left 4 Database match parameters Taxonomy search Select organizm Escherichia coli 502 RK - H20 RK - H	Most intensive peaks selected 200		200 Right-left al	gorithm (negative)	5	
Branched anchor 4 S,T - H20 V Right-left algorithm (negative) R,K - H20 V Branched left 4 Minimum query length (aa) 2 Database match parameters Taxonomy search V M/MS peptide tolerance (m/2) 0.3 Select organism Escherichia coli 562 R, KMS/MS peptide tolerance (m/2) 0.3 Select organism Escherichia coli 562 R, KMS/MS peptide tolerance (m/2) 0.3 Minimum query length (aa) 2 Usord size 2 Threshold 11 Minimum query length (ab) • Select spot (total 71) Matrix PAM30 • Select spot (total 71) 0 Gap costs extension 1 Select spot (total 71) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Anchor length (aa)		4 Anchor algo	prithm (positive)	5	
Right-left algorithm (negative) R.K + H2O Branched left 4 Minimum query length (aa) 2 Database match parameters Select organism Select arganism Escherichia coli 562 RK MS/MS peptide tolerance (m/z) 0.3 BLAST parameters Select organism -blastp-short BLAST parameters -colo Gap costs extension 1 <tr< th=""><th></th><th>-</th><th>4 S,T - H2O</th><th></th><th>0</th><th></th></tr<>		-	4 S,T - H2O		0	
Branched left 4 Minimum query length (aa) 2 Database match parameters MS/MS peptide tolerance (m/z) 0.3 BLAST parameters -blastp-short BLASTP optimized for queries shorter than 30 residues E-value 20000 Window size 40 Word size 2 Threshold 11 Mat target sequences 9 Gap costs extension 1 Select spot (total 71) 01 ca) 02 ca) 03 ca) 04 ca) 05 ca) 05 ca) 05 ca) 06 ca) 07 ca) 09 ca) 01 ca) 01 ca) 01 ca) 01 ca) 02 ca) 03 ca) 04 ca) 05]	
Database match parameters MS/MS peptide tolerance (m/2) 0.3 RK MS/MS peptide tolerance (m/2) 0.8 BLAST parameters -blastp-short BLASTP optimized for queries shorter than 30 residues E-value 200000 Window size 40 Word size 2 Threshold 11 Mat target sequences 500 Matrix PAM30 Gap costs existence 9 Gap costs extension 1 Select apot (total 71) U (a) D2 (a) D3 (a) D3 (a) D1 (Right-left algorithm (r	negative)	R,K - H2O		1	
MS/MS peptide tolerance (m/z) 0.3 RK MS/MS peptide tolerance (m/z) 0.8 ELAST parameters -blastp-short BLAST poptimized for queries shorter than 30 residues E-value 200000 Word size 2 Threshold 11 Mat target sequences 500 Gap costs existence 9 Gap (co) 01 D1 (20) D2 (20) D3 (20) D4 (20) D3 (20) D3 (20) D3 (20) D4 (20) D3 (20) D4 (20) D3 <td>Branched left 4</td> <td></td> <td>Minimum q</td> <td>uery length (aa)</td> <td>2</td> <td></td>	Branched left 4		Minimum q	uery length (aa)	2	
RK MS/MS peptide tolerance (m/2) 0.8 BLAST parameters -blastp-short -blastp-short BLASTP optimized for queries shorter than 30 residues E-value 200000 Word size 2 Threshold 11 Mat target sequences 500 Gap costs existence 9	Database match paran	neters	Taxonomy search			
BLAST parameters -blastp-short BLASTP optimized for queries shorter than 30 residues E-value 200000 Window size Word size 2 Threshold Mat target sequences 500 Matrix Gap costs existence 9 Gap costs extension 1 Select spot (total 71) 01 (20) 02 (20) D1 (20) 02 (20) 03 (20) D2 (20) 03 (20) 04 (20) 05 (20) 04 (20) 05 (20) 04 (20) 05 (20) 04 (20) 05 (20) 03 (20) 03 (20) 04 (20) 03 (20) 04 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03 (20) 03	MS/MS peptide tolera	nce (m/z) 0.3	Select organism	scherichia coli 562		
-blastp-short BLASTP optimized for queries shorter than 30 residues E-value 200000 Window size Word size 2 Threshold Mat target sequences 500 Matrix Gap costs existence 9 Gap costs extension D1 (20) (20) D2 (20) (20) D4 (20) (20) D5 (20) (20) D6 (20) (20) D7 (20) (20) D6 (20) (20) D1 (20) (20) D4 (20) (20) D5 (20) (20) D11 (20) (20) D3 (20) (20) D4 (20) (20) D11 (20) (20) D12 (20) (20) D13 (20) (20) D14 (20) (20) D15 (4) (4) D15 (20) (20) D16 (20) (20)	R,K MS/MS peptide to	lerance (m/z) 0.8				
-blastp-short BLASTP optimized for queries shorter than 30 residues E-value 200000 Window size Word size 2 Threshold Mat target sequences 500 Matrix Gap costs existence 9 Gap costs extension D1 (20) (20) D2 (20) (20) D4 (20) (20) D5 (20) (20) D6 (20) (20) D7 (20) (20) D6 (20) (20) D1 (20) (20) D4 (20) (20) D5 (20) (20) D11 (20) (20) D3 (20) (20) D4 (20) (20) D11 (20) (20) D12 (20) (20) D13 (20) (20) D14 (20) (20) D15 (4) (4) D15 (20) (20) D16 (20) (20)	BLAST parameters					
Word size 2 Threshold 11 Mat target sequences 900 Gap costs existence 9 Gap costs existence 9 Gap costs existence 9 Gap costs Gap costs<	1	TP optimized for queries	shorter than 30 residues			
Mat target sequences 00 Matrix PAMB0 Gap costs existence 9 Gap costs extension 1 D1 (20) (20) (20) (20) (20) D3 (20) (20) (20) (20) (20) D4 (20) (20) (20) (20) (20) D5 (20) (20) (20) (20) (20) D7 (20) (20) (20) (20) (20) D10 (20) (20) (20) (20) (20) D11 (20) (20) (20) (20) (20) D12 (20) (20) (20) (20) (20) D13 (20) (20) (20) (20) (20) D15 (14) (20) (20) (20) (20) D17 (20) (20) (20) (20) (20) D19 (20) (20) (20) (20) (20) D20 (2) (20) (20) (20) (20) D19 (20) (20) (20) (20) (20) D19 (20) (20) (20)	E-value	200000	Window size	40		
Gap costs existence 9 Gap costs extension 1 Select spot (total 71) • • • D1 (20) • • • • D2 (20) • • • • D3 (20) • • • • D5 (20) • • • • D5 (20) • • • • D6 (20) • • • • D7 (20) • • • • D10 (20) • • • • D11 (20) • • • • D12 (20) • • • • D13 (20) • • • • D14 (20) • • • • D15 (14) • • • • D17 (20) • • • • D19 (20) • • • • Select Al • • • •	Word size	2	Threshold	11		
Select spot (total 71) D1 (20) D2 (20) D3 (20) D4 (20) D5 (20) D6 (20) D7 (20) D9 (20) D10 (20) D11 (20) D13 (20) D14 (20) D15 (14) D15 (14) D15 (14) D15 (14) D15 (14) D16 (20) D17 (20) D18 (20) D19 (20) D20 (2) C01 D17 (20) D18 (20) D19 (20) D20 (2) C17 (20) D19 (20) C20 (2) C20 (2)	Mat target sequences	500	Matrix	PAM30 -		
D1 (20) D2 (20) D3 (20) D4 (20) D5 (20) D6 (20) D7 (20) D9 (20) D10 (20) D11 (20) D12 (20) D13 (20) D13 (20) D13 (20) D14 (20) D15 (44) D15 (14) D15 (14) D16 (20) D17 (20) D18 (20) D19 (20) D19 (20) D19 (20) D17 (20) D19	Gap costs existence	9	Gap costs extension	1		
D1 (20) D2 (20) D3 (20) D4 (20) D5 (20) D6 (20) D7 (20) D9 (20) D10 (20) D11 (20) D12 (20) D13 (20) D13 (20) D13 (20) D14 (20) D15 (44) D15 (14) D15 (14) D16 (20) D17 (20) D18 (20) D19 (20) D19 (20) D19 (20) D17 (20) D19	Select spot (total 71)					
	11 (20) D2 (20) D3 (20) D4 (20) D5 (20) D6 (20) D7 (20) D9 (20) D10 (20) D11 (20) D12 (20) D13 (20) D14 (20) D15 (14) D16 (20) D17 (20) D19 (20) D10 (20) D11 (20) D12 (20) D14 (20) D15 (20) D17 (20) D18 (20) D19 (20) D19 (20)					
Run analysis Cancel Default settings						Select Al
				Run analysis	Cancel	Default settings

Figure 17. Search parameters of MS/MS spectra using ProteinReader *De novo* Sequencing.

3. RESULTS

3.1 MASCOT SEARCH ENGINE RESULTS

Result of Mascot search engine is shown at Figure 18.

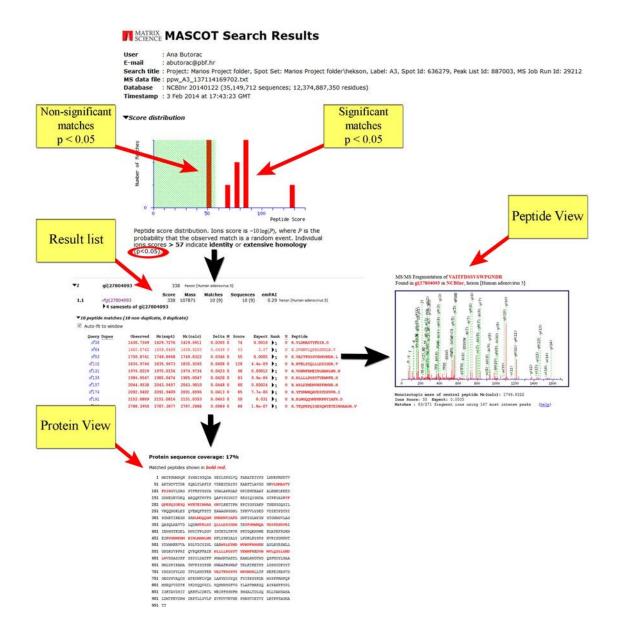


Figure 18. Mascot search engine result.

3.2. PROTEINREADER RESULTS

Final results of analysis are reported for one species as intersection of results obtained from Database Match (Figure 19) and *De novo* Sequencing (Figure 20) as final Report (Figure 21). Proteins that are not confirmed by Sure Shot or Database Match and *De novo* Sequencing overlapping are not taken into consideration.

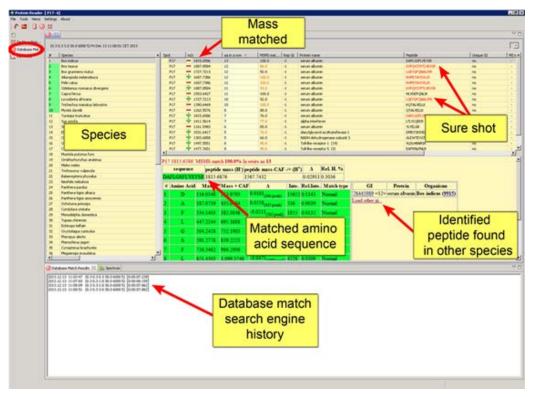
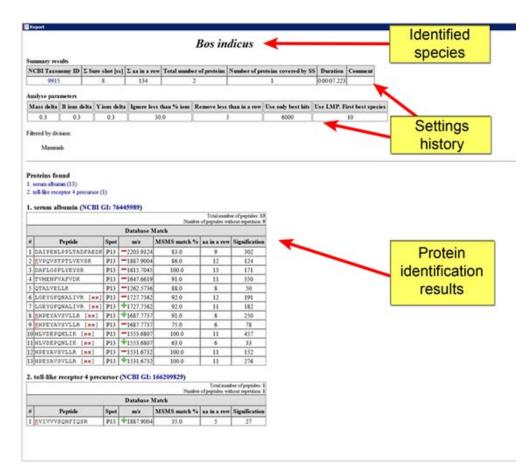



Figure 18. ProteinReader Database Match result.

	H						10	entifie	ea					
100 T	L De Nove Bandrig read	and line				-	protoin	bu d	0 00	10				
1	f Spectra		Linetard	P 141 1424	1	Autorities	protein	by u	ie no	100	1 ti	CPRD-Longave		
	1 Builden		214	1. 101. + 1	101.4/102	man dant property	000	uone	ina		RD .			
101							Sec	uenc	ing					
	×						a service and a	a se		1000				
							States Street and St		1	8.8	NO			
		Select	od						-28	6.000	100			
		Select	ea				e (Posphatase/Imase	-	10					
			10000				second contraction in white en	-	-		80			
		specie	es	17 813 - 1	H009,738	smampode.			3	0.50	80			
								7	78		NO			
								-	<u>.</u>		100			
								3	17	5.3	80			
						(multinger probate MU)	Cold Street and	6	10	34	NO			
							finds regard protect 8		3 ·		80			
			Bit 1 PT0 TEALING Metal Accessment Sequencing No Bit 1 PT0 TEALING Metal Accessment Sequencing No Bit 1 PT0 TEALING Metal Accessment Sequencing No Bit 1 PT0 Expect Sequencing No No Constraints PT0 Expect Expect											
									1		80			
				1.										
				SLUE SPACE	CORNER D	Sys (exc) 01: 30791	290 MIMB P131	551.6732						
				Scene .		Famout		ontities		_		to a Wilson		diama.
								contraction,						
				ALB avotrie IDe	ternel	GE 154425704 MB	MS P13 1531 6732			-		ST. 200 (1997)		2.3
				Score		Famol	14	and Share			IIIa	ich an	gnin	sin -
										-	10.7	0 1100 0451		0/10
			-	Algo. que	ε¥									
		_		E Frotein D	214	LUIRRE	TAKEYAKE .	A	262.27	9				
2	Contractor Resulting Resid	to By Spectrum 22												21
	110.000		12. 12.	V 80		0 8	0	1.0		1.41	1.4	4	44	a version
	100,000		1. N.				M		100	1.0	1.5	1	10	1000
	90,000													
	80,000	-												
		Spe	ctrun	n of I										
	70,000 60,000 50,000										Take.	1001		
	\$ 50,000	identif	ied n	entide				1082,4487		245,1888	1.157	0.54		
	\$ 40,000	i a ci i di	cu p	cpude										
							anapere						1000-020	
	30,000						g188					1479,1940		
	THE OWNER OF				1.11									100
	20,000													
	10,000			*** 2775			1.1.1	envises .			100,220			
	10,000	1	400		11.03	200 800	900 1,000	TIT.			200 1,40	Tul las	1,000	1,700

Figure 19. ProteinReader De novo Sequencing result.

