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ABSTRACT

We propose a method for signal recovery in compressed sens-

ing when measurements can be highly corrupted. It is based

on minimization for . Since it was shown that

minimization performs better than minimization when

there are no large errors, the proposed approach is a natural

extension to compressed sensing with corruptions. We pro-

vide a theoretical justification of this idea, based on analogous

reasoning as in the case whenmeasurements are not corrupted

by large errors. Better performance of the proposed approach

compared to minimization is illustrated in numerical ex-

periments.

Index Terms— Compressive sensing, Sparse signal re-

construction, Nonconvex optimization, Restricted Isometry

1. INTRODUCTION

Compressed sensing (CS) has been intensively studied in re-

cent years [1]. It is based on the fact that sparse or com-

pressible signal can be accurately reconstructed from

a small number of non-adaptive linear measurements. The

measurement process in CS is usually represented as ,

where , , is a measurement or sensing ma-

trix. The most natural approach to reconstruct a sparse vector

from is to solve the optimization problem

subject to (1)

Here, denotes the “norm”, which counts the number

of non-zero elements of a vector. Unfortunately, the above

problem (1) requires combinatorial optimization and is NP-

hard [2]. However, it is known that, if is sufficiently sparse

and the measurement matrix obeys certain conditions, can

be recovered by solving the convex optimization problem

subject to (2)

Usual condition on is that it satisfies the restricted isometry

property (RIP) [3], which means that it is approximate isome-

try when operating on sparse vectors. It was shown that many

random matrices satisfy the RIP with high probability [4].
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In recent years, a generalization of CS was considered,

which was referred to as compressed sensing with corruptions

in [5]. Its mathematical model is

where is a sparse vector and denotes the

identity matrix. Here, is modelling large errors in measure-

ments. In other words, we assume that some elements of

are arbitrarily corrupted without knowing their locations (in-

dexes) in . Several papers [6, 7, 8, 9] have investigated the

recovery methods for this model. They considered the follow-

ing problem in the noiseless case:

subject to

(3)

where is a parameter. In [5], the noisy case was con-

sidered:

subject to

(4)

(here, is related to the noise level). We discuss these papers

and the novelty of our approach, explained next, in Subsection

1.1.

It was demonstrated in [10] that minimization

subject to (5)

for recovers sparse signals from fewer linear mea-

surements than minimization (2). Here, “norm” is

defined as ( denotes -th element

of ). Therefore, it is natural to consider a generalization of

minimization to compressed sensing with corruptions. This

is the motivation for this paper. Following [6], we consider

the following general (although noiseless) formulation of the

problem:

(6)

where is matrix, with , with orthonormal

columns. Here, both and are sparse vectors. Now, we



propose solving the following nonconvex minimization prob-

lem:

subject to (7)

where is a parameter. By change of variable

, it can be equivalently stated as

subject to

Therefore, any numerical algorithm for solving (5) can also

be used for solving (7).

1.1. Previous work

To the best of author’s knowledge, the approach to sparse

reconstruction from corrupted measurements using min-

imization, proposed here, is novel. Several papers, cited

above, considered solving convex formulations (3) and (4).

In [8], the authors proposed to solve (3) with . How-

ever, they concentrated on the problem of error correction,

where generally . They showed that, when is ex-

tremely large and provided is extremely sparse, and can

be exactly recovered in the presence of almost any error (i.e.

close to percent). Their analysis is based on the assump-

tion of Gaussianity of columns of . Also, the results in that

paper require that the sparsity of is sublinear in .

Paper [7] discussed the model in which is formed by se-

lecting rows of an orthogonal matrix. The main result states

that the convex program (3) correctly recovers with

provided and

, where . In other words, sparse signal can

be reconstructed even when close to percent of measure-

ments are corrupted. As argued in [5], the model for used

in [7] does not include some frequently used models.

In [5], the Gaussian model for was discussed. The main

result states that the model (4) with re-

covers up to error proportional to the noise level, provided

and , with probabil-

ity . This result was proved using a generalized

notion of RIP, that considers sparsities of and separately.

We use this concept in this paper too. In [5], a general model

for where rows of are such that and

, was also studied. This model includes matrices

with independent and identically distributed (i.i.d.) entries.

The measurement model (6) that we use in this paper is

the same as in [6]. There, problem formulations (3) and (4)

were considered. It was shown that the matrix , where

has orthonormal columns, satisfies the RIP with high proba-

bility. However, [6] did not use the generalized notion of RIP,

introduced in [5], and therefore their results are sub-optimal.

In [9], a general observation model was

discussed, where and are general matrices. The authors

presented deterministic recovery guarantees using coherence

of and . However, deterministic guarantees are more re-

strictive than those discussed in the above mentioned papers.

1.2. Organization of the paper

Conditions under which the global solution of (7) is exactly

, expressed in terms of the generalized notion of RIP intro-

duced in [5], are discussed in Section 2. A short discussion

on generalized RIP of randommatrices is also included there.

Numerical experiments illustrating good performance of the

proposed method, compared to the convex formulation (3),

are described in Section 3. Conclusions are given in Section

4.

2. RESTRICTED ISOMETRY PROPERTY

We repeat the following definition of generalized RIP from

[5].

Definition 1. For a matrix , define the re-

stricted isometry constant as the smallest number

such that

(8)

holds for all with and all

with (here, denotes the support set

of ).

The following theorem then holds.

Theorem 1. Let be an matrix, with .

Denote and . Let

and such that and are integers and

. Let and be such that

(9)

If

and satisfies

(10)

then the unique minimizer of (7) (with ) is exactly

the pair .

Proof. Let us denote by the solution pair of (7),

and write



Let us denote the support set of by , the support set of

(both in (in )) by , and their union

by . Since is the solution of (7), we have

(11)

Also, from the triangle inequality for and the fact that

,

Here and further, notation refers to the sub-vector of

consisting of elements at indexes in the set . Using the

above, the analogous inequality for , and (11), we have

The above inequality can be written as

Now, using the reverse triangle inequality for and the

inequality (which is valid for

, ), it follows

(12)

We denote and . Let us partition

as , where contains largest (in

absolute value) elements of , contains next largest

elements, and so on. Here,

and . In the same way, we partition as

so that contains largest (in absolute value)

elements of , contains next largest elements, and

so on, where and . We

also define for ,

while for we define , i.e. , depending

on whether or , respectively. The following

inequalities then hold:

(13)

needs to be controlled, for all . Using in-

equalities and

, we have

Therefore, using (12),

(14)

(15)

(14) follows from generalized Hölder inequality, while (15)

follows from the inequality (which

is valid for , ).

Going back to (13), we have

(16)

Because of the condition (10) of the theorem, the scalar factor

is strictly positive, so that , and therefore (from (12))

.

The condition (10) is somewhat restrictive since (9) im-

plies , which is worse than the corresponding condition

in [5]. This should be the artifact of the proof since numer-

ical experiments in Section 3 illustrate better empirical per-

formance of minimization. The theorem gives an optimal

value of trade-off parameter , however it depends on and

, which are related to restricted isometry constants of

and are generally unknown and hard to determine. Intuitively,

smaller values of should enable recovery of very sparse sig-

nals when a large number of measurements are corrupted.

Many random matrices satisfy the condition (10) of the

theorem with high probability. In the following, we suppose

that, for fixed vectors and , satisfies

(17)

(18)



where and are constants that depend only on and

such that and for all . Such

inequalities hold for normal and Bernoulli distribution [4, 6],

but also for sub-gaussian distributions. The following lemma

then holds by the same reasoning as in Lemma in [4].

Lemma 1. If is a random matrix that satisfies the inequal-

ity (18), then for any sets with and with

we have for all

with and with , with

probability .

We omit the proof for brevity. Now, an analogue of the

Theorem in [4] holds. Again, the proof is omitted for the

lack of space (it follows using the same approach as in [4]).

Theorem 2. Let . If the probability distribution

generating satisfies (17) and (18), then there exist constants

and , depending only on , such that the

matrix satisfies the RIP (as defined in (8)) with

constants and and with

prescribed with probability .

The above theorem follows easily from the corresponding

results from [4]; however, it gives sharper bounds because

it considers sparsities of and separately. This was not

emphasized in [6]. On the other hand, an analogous result

was shown in [5], but there a different bound was used for

the probability . Bound on the

sparsity of that follows from the above theorem is more re-

strictive than that in [8, 7], but they considered different mod-

els. We note that the exact probability for satisfying the con-

dition (10) for given probability distribution and parameters ,

and in Theorem 1 follows from the above theorem (ex-

act expressions are omitted for simplicity and lack of space).

We also note that, unfortunately, it seems that the ap-

proach from [10] (using the variant of the restricted isome-

try property), which would yield better bounds for smaller ,

cannot be extended to compressed sensing with corruptions.

3. EXPERIMENTS

In this section we perform some empirical tests to check how

many corruptions (7) can tolerate. In all numerical experi-

ments performed here, was set to and (7) was solved

using an iteratively reweighted least squares (IRLS) method

from [11].

We set , , and we vary in

the range , and the number of corrupted measure-

ments in the range . The elements of matrix

are generated i.i.d. from normal distribution with mean zero

and variance . Then, the columns of are normalized.

We set . Locations of nonzero indexes of and are

generated randomly, while the values of nonzero elements of

and are generated i.i.d. from standard normal distribu-

tion. Noise was not added to the measurements (adding noise

would require using a noise-aware algorithm for minimiza-

tion, which we avoid here for simplicity).

We compare IRLS with the convex approach (3). To solve

(3), CVX package [12, 13] for MATLAB was used. Param-

eter in (3) and (7) was set to . Other values were also

tested, but this choice gave representative result. Of course,

it should be noted that better results (both for IRLS and (3))

could possibly be obtained by tuning the value of for ev-

ery value of signal sparsity and the number of corruptedmea-

surements, but the optimal value is hard to determine (and is

generally unavailable in practice).

For every fixed and , repetitions were performed,

every time randomly generating , and . Recovery is con-

sidered successful if the reconstruction signal-to-noise ratio

(SNR), defined as (where is the output

of an algorithm), is above dB (i.e., relative error is below

). Figure 1 shows the results.
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Fig. 1: The plot shows frequency of exact reconstruction

(over runs) by solving: (a) (7) using IRLS algorithm; (b)

(3), for a range of signal sparsities and numbers of highly cor-

rupted measurements. See text for details.

4. CONCLUSIONS

In this paper, an approach to compressed sensing with cor-

ruptions based on nonconvex optimization was proposed. Its

theoretical analysis is based on the analysis of minimiza-

tion in the case when measurements are not highly corrupted

[10]. Sufficient conditions for the success of minimiza-

tion were expressed in terms of the generalized notion of re-

stricted isometry property, as introduced in [5]. Although the

algorithm can only be expected to produce a local minimum

of the problem, numerical experiments confirm better perfor-

mance of minimization compared to minimization em-

pirically. We also emphasize that the approach discussed here

can be straightforwardly extended to the case of noisy mea-

surements, in similar way as in [14], which was not done here

for the lack of space.
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