Mapping amoeboid cell migration

Till Bretschneider
Warwick Systems Biology Centre

> InnoMol Biolmaging workshop 22 ${ }^{\text {nd }}$ October 2014, Ruđer Bošković Institute, Zagreb

THE UNIVERSITY OF
 WARWICK

Outline

Part I: Methods (LineageTracker, CellTracker, QuimP)

- Introduction to graph based approaches for multi cell (point) tracking and image segmentation
- Surface matching: Tackling biological shape variability (active contour based methods)
- Utilising inexpensive GPU computing for fast 3D real time imaging of Light Sheet Microscopy Data

Part II: Applications: Tracking spatio-temporal fluorescence distributions in migrating cells

- Biochemistry: Fitting mathematical models for cell reorientation to time series image data
- Cellular Mechanics: Blebbing
- Zatulovskiy E, Tyson R, Bretschneider T, Kay RR. Bleb-driven chemotaxis of Dictyostelium cells. J Cell Biol. 2014 Mar 17;204(6):1027-44.
- Tyson RA, Zatulovskiy E, Kay RR, Bretschneider T. How blebs and pseudopods cooperate during chemotaxis. Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11703-

WARWICK

Cell tracking using multi feature global optimisation

- LineageTracker: ERASysBio project to investigate the connection between the cell cycle and the clock using FUCCI markers (tracking cell nuclei)

Feillet C, Krusche P, Tamanini F, Janssens RC, Downey MJ, Martin P, Teboul M, Saito S, Lévi FA, Bretschneider T, van der Horst GT, Delaunay F, Rand DA. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9828-33.

t1

t2

t3

Graph: consists of nodes (vertices) and edges

Weight matrix W: edges weighted according to similarity of nodes

Similarity (weight) matrix can account for multiple features:

- distance of cells
- differences in brightness, area, shape
- cell state (dividing, post division)
- multiple channel information ...

Weights describe the probability P that two cells at subsequent time points are identical.

P can be converted into a cost (1-P). Standard methods from linear algebra for minimising the total cost exist (Hungarian algorithm and derivates)

Adjacency matrix A captures the structure of the graph

Constitutive matrix C containing weights for each edge

The graph Laplacian matrix $\mathrm{L}=\mathrm{A}^{\top} \mathrm{CA}$ incorporates both, the structure and weights

L is the discrete version of the continuous Laplace operator

$$
L=\operatorname{div} \text { grad }=\delta^{2} / \delta x^{2}
$$

Random walks for image segmentation

Graph Laplacian L = div grad $=\delta^{2} / \delta x^{2}$
L is associated with diffusion problems or random walks.
Fick's $2^{\text {nd }}$ law of diffusion: $\quad \delta u / \delta t=D \delta u^{2} / \delta x^{2}$
u: concentration, electric potential, temperature, image brightness
Laplace's equation: $\quad \delta u^{2} / \delta x^{2}=0$ (stationary)
Laplace's equation can be solved by minimizing the Dirichlet integral (potential energy). In effect, diffusion smoothens out all gradients.

Dirichlet integral

$$
D[u]=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d \Omega \text { where } \nabla=\text { grad }
$$

The corresponding problem on a graph is solved by finding:

$$
\min 1 / 2 u^{\top} L u=1 / 2 \Sigma\left|u_{i}-u_{j}\right|^{2}
$$

with suitable boundary conditions

Supervised segmentation: user provide boundary conditions (partitioning of a graph)

Consider diffusion on the graph with node 1 as source and node 5 as sink. Diffusion is limited across edges with low similarity, ie where we have steps in the image. Anisotropic diffusion preserves edges.

$P_{f g}>P_{b g}$: assign pixel to foreground
$P_{b g}>P_{f g}$: assign pixel to background
Probabilistic framework allows to put confidence limits on segmentation, for example to restrict processing to regions of high confidence

Advantages of the random walk segmentation (and its many variants)

- Multi object segmentation possible (cell cluster)
- Enables neutral segmentation (separating cells with identical intensities)
- Works in 3D
- Multiple features can be integrated (intensity, texture, multiple colour channels, ...)
- Computationally very efficient
- Sound theoretical basis

CellTracker software: Measuring nucleus-cytoplasmic translocations of transcription factors

```
Xue M, Momiji H, Rabbani N, Barker G, Bretschneider T, Shmygol A, Rand D, Thornalley PJ. Frequency modulated translocational oscillations of Nrf2 mediate the ARE cytoprotective transcriptional response. Antioxid Redox Signal. 2014 Sep 2. [Epub ahead of print]
```


WA RWICK

3D analysis of neutrophil motility using Laplacian approaches

Segmentation

Pre-processing
with Len Stephens \& Phil Hawkins, Babraham

Shape analysis

Du et al., Cytometry A, 2010
Du et al., ISBI 2011
Du et al., ISBI 2012
Du et al., BMVC 2012
Du et al., BMC Bioinformatics, 2013

Quantifying shape deformations

Problem: find corresponding nodes on two surface meshes

- Rigid transformations
- Using fiducial markers

- 3D shape matching using spherical parameterisation
- Direct feature matching (curvature/intensity, ...) using spectral coordinates (modes/eigenvectors of the graph Laplacian) to constrain the problem (regularisation)
- Deformable contours/surfaces (QuimP)

WARWICK

Spectral alignment methods

FOCUSR: Feature Oriented Correspondence Using Spectral Regularization--A Method for Precise Surface Matching

Herve Lombaert, Leo Grady, Jonathan R. Polimeni, Farida Cheriet Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.35, no.9, pp. 2143,2160, Sept. 2013

Eigendecomposition of the graph Laplacian matrix it its eigenmodes (eigenvectors) reveals strong
correspondences between shapes

Fig. 1. Example of eigenmodes for pairs of animals and human brain surfaces. Each row shows the first five spec- tral components of a model (eigenmodes of the associated graph Laplacian, reordered and sign adjusted, so paired sets match). The color scale indicates the value of the spectral coordinate over the surface.

WARWICK

QuimP: ImageJ plugins for quantifying cellular morphodynamics

Active contour based methods for automated cell outline detection

$$
\begin{align*}
& m * \cdot \vec{v}_{i}=\vec{F}_{i} \tag{2}\\
&{\overrightarrow{r_{i}^{\prime}}}^{\prime} \cdot d t={\overrightarrow{r_{i}}}^{\prime} \cdot \vec{F}_{i}^{\prime} * d f \tag{3}\\
&{\overrightarrow{x_{i}^{\prime}}}^{\prime} \cdot d t={\overrightarrow{x_{i}^{\prime}}}^{\prime} \cdot{\overrightarrow{r_{i}}}^{\prime} \cdot d t * d f \tag{4}
\end{align*}
$$

The trumeation criterion is fulfilled. when $\vec{v}^{\prime}<$ franc.

Electrostatic Contour Mapping Method

Field lines do not cross

Light Sheet Fluorescence Microscopy

Illumination lens

z - stacking
(~2700 slices, 2.6 micron spacing)

188 sec frame interval (~ 12 hour imaging time)

2560 pixels (0.65 microns per pixel)

Adding GPU capabilities - Netstore NA255A

PCl express 3.0

4 GPUs share
bandwidth $\approx 16,000$ $\mathrm{MB} / \mathrm{s} \quad(16 \mathrm{~GB} / \mathrm{s})$

Available to all remote users

Surface detection

Iteratively warp sampling windows to the surface. Score intensity, variance, and 'sharpness' (via FFT transform)

Flow analysis using local registration

3D visualisation tobender

Real Time Tracking

Warwick Systems Biology

Dictyostelium:
Chemotaxis towards cAMP

Dictyostelium Chemotaxis:

 Actin-Assembly at the Front and Myosin-II Recruitment to the Tail

 Actin-Assembly at the Front and Myosin-II Recruitment to the Tail}

Red: Polymerized actin (mRFP-LimE Δ coil probe)

Green: Myosin II

(GFP - heavy chain)

Frame interval: 5 seconds

WARWICK

Regulation of Actin polymerization at the front and Myosin-II contraction at the rear

Questions

How can we extract quantitative data of complex spatiotemporal dynamics?

Can we use mathematical modelling to understand the most basic circuitry underpinning cell polarisation?

Do unique solutions exist for a particular model?

WARWICK

Response of Dictyostelium to shear flow

Polarity reversal at high shear-stresses (2.1 Pa)

Meinhardt
Levchenko/Iglesias

Otsuji

$$
\begin{aligned}
& \frac{\partial A}{\partial t}=\frac{s r_{a}\left(\frac{A^{2}}{B}+b_{a}\right)}{\left(s_{c}+C\right)\left(1+s_{a} A^{2}\right)}-r_{a} A+D_{A} \frac{\partial^{2} A}{\partial x^{2}}\left|\frac{\partial A}{\partial t}=k_{A} s-k_{-A} A \quad\right| \frac{\partial U}{\partial t}=a_{1}\left[V-\frac{U+V}{\left(a_{2} s(U+V)+1\right)^{2}}\right]+D_{u} \frac{\partial^{2} U}{\partial x^{2}} \\
& \frac{d B}{d t}=r_{b} \sum_{n} \frac{A}{n}-r_{b} B \\
& \frac{\partial C}{\partial t}=b_{c} A-r_{c} C+D_{C} \frac{\partial^{2} C}{\partial x^{2}} \\
& \frac{\partial I}{\partial t}=k_{I} s-k_{-I} I+D \frac{\partial^{2} I}{\partial x^{2}} \\
& \frac{\partial V}{\partial t}=a_{1}\left[\frac{U+V}{\left(a_{2} s(U+V)+1\right)^{2}}-v\right]+D_{v} \frac{\partial^{2} U}{\partial x^{2}} \\
& \frac{\partial R}{\partial t}=k_{R} A\left(R_{T}-R\right)-k_{-R} I R \\
& s=(1+d y \cos (2 \pi x))
\end{aligned}
$$

s: external signal, dy is a free parameter to start with

Model Fitting

- Implementation in PottersWheel (MATLAB)
- Experimental data: Activator variable resembles actin fluorescence sampled at $\mathrm{P}=20$ points in the cell cortex
- 1D PDE model on a closed circle (periodic boundary conditions)
- Finite difference discretization

$$
\partial^{2} C_{i} / \partial x^{2} \approx\left(C_{i-1}-2 C_{i}+C_{i+1}\right) /(\Delta x)^{2}
$$

- N -variable PDE problem is expressed as system of PxN ODEs
- Standard ODE solvers (RK45) and NLLS methods (Gauss Newton Trustregion) for fitting can be used

Diffusion between nodes

Fitting the Meinhardt model to averaged time course data

Simultaneous fitting of three experimental conditions

Red: emerging new front, black: linearly decaying old front

Identifiability analysis: Profile likelihood estimation

Reducing the Meinhardt model

- Inhibitor B turns out to stay almost constant
- replace it by $B(P)=1+\beta_{0}\left(P^{2}+\beta_{1} P\right)$ where P is the pressure in Pascal
- $d y(P=0)=0$, and $d y(P)=$ const

$$
\begin{aligned}
& \frac{\partial A}{\partial t}=\frac{s r_{a}\left(\frac{A^{2}}{B}+b_{a}\right)}{\left(s_{c}+C\right)\left(1+s_{a} A^{2}\right)}-r_{a} A+D_{A} \frac{\partial^{2} A}{\partial x^{2}} \\
& \frac{d B}{d t}=r_{b} \sum_{n} \frac{A}{n}-r_{b} B \\
& \frac{\partial C}{\partial t}=b_{c} A-r_{c} C+D_{C} \frac{\partial^{2} C}{\partial x^{2}} \\
& \cdots=(1+\operatorname{dycos}(2 \pi x)) \\
& \quad \quad \text { original }
\end{aligned}
$$

Removing inhibitor B from the Meinhardt model

Making predictions: stable movement at $\mathrm{P}=1 \mathrm{~Pa}$

Levchenko (significant parameter change required)

2-variable Meinhardt (parameters as before: front splits in three)

2-variable Meinhardt with D_{C} decreased by 20%

Fitting spontaneous movement of single cells

(convolution performed by deterministic PDE models helps interpreting the underlying stochastic process, estimating timescales of how determined a system actually is)

Parameters

Original Meinhardt 3 -variable

Meinhardt 2-variable (identifiable)

Meinhardt 2-variable
Single stable front

Meinhardt 2-variable
Random motility

$\mathrm{D}_{\text {A }}$	4.274×10^{-2}	D_{A}	4.415×10^{-2}	D_{A}	4.415×10^{-2}	$\mathrm{D}_{\text {A }}$	2.311×10^{-3}
D_{C}	9.513×10^{-2}	D_{c}	9.768×10^{-2}	D_{C}	7.064×10^{-2}	D_{c}	1.471×10^{-8}
b_{a}	0.2881	b_{a}	0.2776	b_{a}	0.2776	b_{a}	0.1438
b_{c}	0.2022	b_{c}	0.2076	b_{c}	0.2076	b_{c}	5.643×10^{-2}
r_{a}	0.2371	r_{a}	0.2393	r_{a}	0.2393	r_{a}	9.467×10^{-2}
r_{c}	0.2346	r_{c}	0.2378	r_{c}	0.2378	r_{c}	6.552×10^{-2}
S_{a}	5.833×10^{-3}	S_{a}	5.647×10^{-3}	S_{a}	5.647×10^{-3}	S_{a}	3.054×10^{-3}
S_{c}	0.3534	S_{c}	0.3397	S_{c}	0.3397	S_{c}	0.2791
r_{b}	1.000×10^{-5}						
		β_{0}	6.081×10^{-3}	β_{0}	6.081×10^{-3}		
dy ${ }_{\text {low }}$	1.318×10^{-2}	β_{1}	1.840	β_{1}	1.840		
dy $\mathrm{y}_{\text {high }}$	1.281×10^{-2}	dy	1.280×10^{-2}	dy	1.280×10^{-2}		

Summary Reorientation

- Well-established tools (Potterswheel) for fitting systems of ODEs can be used to fit reaction-diffusion models. The most simple approach is based on a finite-difference discretization of the diffusion operator.
- Profile likelihood estimations helps immensely to evaluate the identifiability of models.
- Two popular models for cell orientation (Meinhardt and Levchenko) fit similarly well. A reduced version of the Meinhardt model is fully identifiable.
- Predictions help to further constrain parameters. Long term stability of single fronts can be achieved by a 20% reduction of D_{C}, the diffusion constant of the inhibitor.
- We are able to fit single cell data of randomly migrating cells. Because they need to produce simultaneous fronts, the derived parameter set is significantly changed.

Migration under agarose induces blebbing in Dictyostelium
with Evgeny Zatulovskiy, Rob Kay (MRC LMB, Cambridge)

Front

F-actin marker: GFP-ABD (ABP-120)
Spinning disk microscopy (4.5 fps) Confocal microscopy (2 fps)

Blebbing is driven by Myosin-II dependent pressure

ERM cortex membrane linkers

membrane
M2 melanoma cell line

Cellular blebbing

- Myosin-II dependent, driven by hydrostatic pressure
- Often found in cells moving in 3D constrained environments (zebrafish primordial germ cells, tumor cell migration)

How can cells direct blebs to the cell front? How do blebs and actin based protrusions interact?

- Previously known regulators of bleb site selection:

Weakening of the acto-myosin cortex, local contraction of myosin-II, asymmetric distribution of membrane-cortex linkers

- New: Cell geometry and membrane tension are important factors in bleb site selection, too

ECMM-APT: Automatic Protrusion Tracking

WA RWICK

Negative curvature promotes blebbing

Blebs Nucleate at the Flanks (Armpits) During Chemotaxis

Frequency of Actin-driven
Pseudopodia Nucleation
Frequency of
Bleb Nucleation

leading eage

Chains of blebs under 2\% agarose (bleb only mode)

$$
0.0 \mathrm{sec}
$$

WA RWICK

Actin driven protrusions can localize bleb nucleation in Dictyostelium
F-actin drives the formation of blebs by inducing curvature

Concave

A biomechanical model for bleb initiation

Forces: Membrane tension, bending rigidity, intracellular pressure, Hookean springs link membrane and cortex. Linkers break above certain length.

Actin cortex is considered fixed during blebbing, no regrowth of actin cortex at the naked membrane.

Blebbing of Fundulus deep cells maintaining a highly curved waist

Kindly provided by Rachel Fink, Mount Holyoke College

Summary Blebbing

Long term goal: Linking biochemistry and mechanics

- Actin provides a force pushing the cell membrane outward, and increases membrane tension. Work by Orion Weiner and others has shown that membrane tension quenches protrusive activity at the cell rear (long range inhibition). Our work shows that tension has a dual role: In concave regions it can also act as a local activator of cellular protrusions in form of blebs.

WARWICK

Current members

Richard Tyson, QuimP, Blebbing in Dictyostelium

Chengjin Du, CellTracker: Quantifying transcription factor dynamics, 3D cell reconstructions

Robert Lockley, Modelling cell polarity

Main Collaborators

Graham Ladds, Warwick Medical School Rob Kay, MRC-LMB, Cambridge
Kees Weijer, University of Dundee Len Stephens, Babraham, Cambridge

Neil Venables: Microtubule dynamics

Alumni

Mike Downey, LineageTracker

Ingrid Tigges, Microfluidics experiments, now working for Mathworks

Supported by
wellcometrust

