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Outline

Part |I: Methods (LineageTracker, CellTracker, QuimP)

* Introduction to graph based approaches for multi cell (point)
tracking and image segmentation

e Surface matching: Tackling biological shape variability (active
contour based methods)

e Utilising inexpensive GPU computing for fast 3D real time
imaging of Light Sheet Microscopy Data

Part II: Applications: Tracking spatio-temporal fluorescence

distributions in migrating cells

* Biochemistry: Fitting mathematical models for cell reorientation
to time series image data

e Cellular Mechanics: Blebbing

« Zatulovskiy E, Tyson R, Bretschneider T, Kay RR. Bleb-driven chemotaxis of Dictyostelium cells. J Cell
Biol. 2014 Mar 17;204(6):1027-44.

+ Tyson RA, Zatulovskiy E, Kay RR, Bretschneider T. How blebs and pseudopods cooperate during
chemotaxis. Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11703-
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Cell tracking using multi feature global optimisation

+ LineageTracker: ERASysBio project to investigate the connection between the cell cycle and the
clock using FUCCI markers (tracking cell nuclei)

Feillet C, Krusche P, Tamanini F, Janssens RC, Downey MJ, Martin P, Teboul M, Saito S, Lévi FA, Bretschneider
T, van der Horst GT, Delaunay F, Rand DA. Phase locking and multiple oscillating attractors for the coupled
mammalian clock and cell cycle. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9828-33.
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Graph: consists of nodes (vertices) and edges



Weight matrix W: edges weighted according to similarity of nodes

Similarity (weight) matrix can account for multiple features:
 distance of cells

 differences in brightness, area, shape

 cell state (dividing, post division)

« multiple channel information ...

Weights describe the probability P that two cells at subsequent time points are
identical.

P can be converted into a cost (1-P). Standard methods from linear algebra for
minimising the total cost exist (Hungarian algorithm and derivates)



Adjacency matrix A captures the Constitutive matrix C containing weights
structure of the graph for each edge

The graph Laplacian matrix L=ATCA incorporates both, the structure and
weights

L is the discrete version of the continuous Laplace operator

L = div grad = 5%/5x2



Random walks for image segmentation

Graph Laplacian L = div grad = $%/6x?

L is associated with diffusion problems or random walks.

Fick's 2nd law of diffusion:  du/6t =D du?/dx2

u: concentration, electric potential, temperature, image brightness
Laplace’s equation: ou?/ox?>=0 (stationary)

Laplace’s equation can be solved by minimizing the Dirichlet integral
(potential energy). In effect, diffusion smoothens out all gradients.

1

Dirichlet integral D[u] = _/ Vul2dO where= grad
Q

2

The corresponding problem on a graph is solved by finding:
min 2 u'Lu =72 % |u; - uj|?

with suitable boundary conditions



Supervised segmentation: user provide boundary conditions
(partitioning of a graph)

Consider diffusion on

the graph with node 1
: as source and node 5

Loroscon : as sink. Diffusion is
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Probabilistic framework allows to put confidence
limits on segmentation, for example to restrict
processing to regions of high confidence




Advantages of the random walk segmentation (and its many variants)

« Multi object segmentation possible (cell cluster)

« Enables neutral segmentation (separating cells with identical
intensities)

 Works in 3D

« Multiple features can be integrated (intensity, texture, multiple colour
channels, ...)

« Computationally very efficient

« Sound theoretical basis

CellTracker software: Measuring nucleus-cytoplasmic translocations of
transcription factors
Xue M, Momiji H, Rabbani N, Barker G, Bretschneider T, Shmygol A, Rand D, Thornalley PJ. Frequency

modulated translocational oscillations of Nrf2 mediate the ARE cytoprotective transcriptional response. Antioxid
Redox Signal. 2014 Sep 2. [Epub ahead of print]
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3D analysis of neutrophil motility using Laplacian approaches

1 Segmentation Pre-processing

with Len Stephens & Phil
Hawkins, Babraham

Spherical
parameterization

Surface expansion




Quantifying shape deformations

Problem: find corresponding nodes
on two surface meshes

* Rigid transformations

« Using fiducial markers

« 3D shape matching using spherical parameterisation

« Direct feature matching (curvature/intensity, ...) using spectral
coordinates (modes/eigenvectors of the graph Laplacian) to

constrain the problem (regularisation)

« Deformable contours/surfaces (QuimP)

WARWICK



Spectral alignment methods

FOCUSR: Feature Oriented Correspondence Using Spectral
Regularization--A Method for Precise Surface Matching

Herve Lombaert, Leo Grady, Jonathan R. Polimeni, Farida Cheriet
Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.35, no.9, pp.

2143,2160, Sept. 2013



Figenmode 1 Eigenmode 2 Eloenmode 3 Eloenmode 4 Elenmode 5

Horse #1

Eigendecomposition
of the graph Laplacian
matrix it its
eigenmodes
(eigenvectors) reveals
strong
correspondences
between shapes
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Fig. 1. Example of eigenmodes for pairs of animals and human brain surfaces. Each row
shows the first five spec- tral components of a model (eigenmodes of the associated
graph Laplacian, reordered and sign adjusted, so paired sets match). The color scale
indicates the value of the spectral coordinate over the surface.



For all points v;:
. X = (x, x?, x3),
For all points v;:
X; = (x02);

|

Closest points
in space:
min¢ I X;— Y¢(i)||

‘. . Relative error of the ¢ - Relative error of the
Corresponding points: Correspondence map ! * Correspondence map

X¢(i) =(xv7) .. (in 0/ lavrar tha hattas) (in %, lower the better)
Average error: 2.02%

Closest points
in spectral domain:
min¢ 1 — %(i)”
:( ~ Corresponding points:
B X i) = (X(l)’ x®, x(3)) b0)
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Correspondence using
Closest points in space

(wrong matching) 3D

(a) Finding closest poin domain (matched legs)

© WoO~r h Correspondence map
] (in %, lower the better)
Correspondence using

/ Average error: 1.46%
. FOCUSR . Spectral embeddings in 3D
(improved matching) X (red) and Y(blue)
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QuimP: ImageJ plugins for quantifying cellular morphodynamics

BOA — Cell outline tracking

’—'\'\

Linking outlines through time

ECMM — Region
Mapping

Sy

Region tracking

ANA — Intensity
sampling

Fluorescence measurements

Dormann et al., Cell Motil. Cytoskeleton, 2002; Bosgraaf et al., ibid.,

2009 go.warwick.ac.uk/quimp




Active contour based methods for automated cell outline detection

image force
contraction force
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Electrostatic Contour Mapping Method

Tyson et al.: High Resolution Tracking of Cell
Membrane Dynamics in Moving Cells
Math. Model. Nat. Phenom. Vol. 5, No. 1, 2010

-ve Charge +ve Charge

Field lines do not cross



Light Sheet Fluorescence Microscopy

lllumination Imaged volume
lens

/VQD

Light Sheet

z — stacking

188 sec frame interval (~2700 slices, 2.6 micron spacing)

(~12 hour imaging time) _ . _
2560 pixels (0.65 microns per pixel)

400 pixels
(0.46 microns
per pixel)
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Adding GPU capabilities — Netstore NA255A
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PCI exrss 30 |
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. __________ 4GPUsshare

ZAN ~—— "'-';’»_' ' bandwidth = 16,000
' TR \IB/s (16 GB/s)

= Available to all remote
. users
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Surface detection

Iteratively warp sampling windows to
<® the surface. Score intensity, variance,
and ‘sharpness’ (via FFT transform)

THE UNIVERSITY OF

Warwick Systems Biology WARWICK



-
O
e

©
—
B2

O)

O

-
'©

@)
O

O)
§=

)]

>
B2

)]
=

©

-

©

=
O
LL

WARWICK

Warwick Systems Biology



3D visualisation Aebiender
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Real Time Tracking
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Dictyostelium:
Chemotaxis towards cAMP




Dictyostelium Chemotaxis:
Actin-Assembly at the Front and Myosin-ll Recruitment to the Tail

Red: Polymerized actin
(mRFP-LIimE A coil probe)

Green: Myosin |l
(GFP — heavy chain)

Frame interval: 5 seconds




Regulation of Actin polymerization at the front and
Myosin-ll contraction at the rear

Membrane-
to-cortex
binding

cAMP

o
C_cAR1-4 D

Ga+Gpy

RasC, RasgG, ...

Adhesion to
substratum

Contraction
polymerisation

. dQ CrossinKkIing

Zatulovskiy, Tyson, Bretschneider & Kay. JCB, 2014



Questions

How can we extract quantitative data of complex spatio-
temporal dynamics?

Can we use mathematical modelling to understand the most
basic circuitry underpinning cell polarisation?

Do unique solutions exist for a particular model?




Response of Dictyostelium to shear flow

.

Ingrid Tigges, Warwick

Polarity reversal at high shear-stresses (2.1 Pa)




Meinhardt
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Model Fitting

Implementation in PottersWheel (MATLAB)

Experimental data: Activator variable resembles actin fluorescence
sampled at P=20 points in the cell cortex

1D PDE model on a closed circle (periodic boundary conditions)
Finite difference discretization

0%C;/0x* = (Ci—1 — 2C; + Ci11)/(Ax)?

N-variable PDE problem is expressed as system of PxN ODEs

Standard ODE solvers (RK45) and NLLS methods (Gauss Newton Trust-
region) for fitting can be used

Diffusion between nodes
—> < >

Nodes




Fitting the Meinhardt model to averaged time course data
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Simultaneous fitting of three experimental conditions
Red: emerging new front, black: linearly decaying old front

High Shear Low Shear Flow-noflow

Biological Data

4 4 4
2 2 2
0 100 0 100 0 100 200

Meinhardt Model

4 4
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Levchenko Model

4 4 4
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Mean Cortical Florescence

Otsuji Model
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2 2 2
0 100 0 100 0 100 200
Time (s)



Meinhardt Model

Levchenko Model

2
XpL

2
XpL

2
XpL

2
XpL

2
XpL

2
XpL

Identifiability analysis: Profile likelihood estimation
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Reducing the Meinhardt model

* Inhibitor B turns out to stay almost constant

« replace it by B(P)=1+p,(P? +3,P) where P is the pressure in Pascal

« dy(P=0) =0, and dy(P) = const

0A (4 10, 04 0A o254 b 0*A
— = i (B T ) —r A+ Dyp— = i (B(P)+ ) —r A+ Dy—
0t (sc+C)(14s,4%) 0z? ot (sc+C)(1+s,42) 0z
dB A
E = Tb; g - TbB
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ot * on? ot * on?

s = (1 + dycos(2mz)) s = (l+ay (P1cos(2mz))

original modified



Removing inhibitor B from the Meinhardt model

high shear low shear flow to no-flow
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Making predictions: stable movement at P=1Pa

Levchenko
(significant parameter
change required)

2-variable Meinhardt
(parameters as before:
front splits in three)

2-variable Meinhardt
with D. decreased by 20%
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Fitting spontaneous movement of single cells
(convolution performed by deterministic PDE models helps interpreting the underlying
stochastic process, estimating timescales of how determined a system actually is)

Cell Circumference

Meinhardt

Cell Circumference

0 100 200 200



Original Meinhardt

Parameters

Meinhardt 2-variable

Meinhardt 2-variable

Meinhardt 2-variable

3-variable (identifiable) Single stable front Random motility
Da 4.274x107° | Da 4.415x107 | Da 4.415x107 | D, 2.311x107
D¢ 9.513x107 | D¢ 9.768x107 | D¢ 7.064x107 | D¢ 1.471x10°
ba 0.2881 ba 0.2776 ba 0.2776 ba 0.1438
be 0.2022 be 0.2076 be 0.2076 be 5.643x107
o 0.2371 o 0.2393 o 0.2393 o 9.467x107°
e 0.2346 e 0.2378 % 0.2378 e 6.552x1072
S, 5.833x107° | s, 5.647x10° | s, 5.647x10° | s, 3.054x107
S 0.3534 S 0.3397 S 0.3397 S 0.2791
b 1.000x107°

Bo 6.081x107° | Bo 6.081x107

dYiow 1.318x107 | By 1.840 B 1.840
dYhigh 1.281x107 | dy 1.280x107 | dy 1.280x107




Summary Reorientation

Well-established tools (Potterswheel) for fitting systems of ODEs
can be used to fit reaction-diffusion models. The most simple
approach is based on a finite-difference discretization of the
diffusion operator.

Profile likelihood estimations helps immensely to evaluate the
identifiability of models.

Two popular models for cell orientation (Meinhardt and Levchenko)
fit similarly well. A reduced version of the Meinhardt model is fully
identifiable.

Predictions help to further constrain parameters. Long term stability
of single fronts can be achieved by a 20% reduction of D, the
diffusion constant of the inhibitor.

We are able to fit single cell data of randomly migrating cells.
Because they need to produce simultaneous fronts, the derived
parameter set is significantly changed.



Migration under agarose induces blebbing in Dictyostelium

with Evgeny Zatulovskiy, Rob Kay
(MRC LMB, Cambridge)

cAMP
cells cells 0.00 sec

VAR A 4 '

AGAR

J‘ Front

—

gradient

F-actin marker: GFP-ABD \HBP-].ZO)

Spinning disk microscopy (4.5 fps)
Confocal microscopy (2 fps)

0.0 0.5 1.0 2.0
Agarose concentration (%)

Tyson, Zatulovskiy, Kay & Bretschneider, PNAS 2014



Blebbing is driven by Myosin-Il dependent pressure

l ERM cortex membrane

HES
membrane
M2 melanoma cell line ' l l l '
&&W

cortex

—_— AN
TN

Net hydrostatic pressure.
Myosin Il contraction




Cellular blebbing

* Myosin-Il dependent, driven by hydrostatic pressure
e Often found in cells moving in 3D constrained environments
(zebrafish primordial germ cells, tumor cell migration)

How can cells direct blebs to the cell front? How do blebs and
actin based protrusions interact?

* Previously known regulators of bleb site selection:
Weakening of the acto-myosin cortex, local contraction of
myosin-ll, asymmetric distribution of membrane-cortex




ECMM-APT: Automatic Protrusion Tracking

11.5 sec;‘-_ _,-*’:27.4 sec ! 39.6 sec
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normalised cell outline normalised cell outline
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Negative curvature promotes blebbing

cAMP, 0.7% agarose
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Blebs Nucleate at the Flanks (Armpits) During Chemotaxis

trailing

edge .
leading
edge

Chemical gradient

Frequency of Actin-driven Frequency of
Pseudopodia Nucleation Bleb Nucleation

leading
eage

leading  trailing
edge edge

trailing
edge




Chains of blebs under 2% agarose (bleb only mode)

0.0 sec

p2.B




Actin driven protrusions can localize bleb nucleation in Dictyostelium

F-actin drives the formation of

Net Hydrostatic blebs by inducing curvature

Pressure LN
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High curvature
and dense actin

1‘ Cortex tension il

Membrane tension

Concave
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membrane/cortex




A biomechanical model for bleb initiation
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cell outline ' cell outline
(node number) (node number)

Forces: Membrane tension,
bending rigidity, intracellular
pressure, Hookean springs link
membrane and cortex. Linkers
break above certain length.

Actin cortex is considered fixed
during blebbing, no regrowth of
actin cortex at the naked
membrane.
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Blebbing of Fundulus deep cells maintaining a highly curved waist

19:88:9




Summary Blebbing

Long term goal: Linking biochemistry and mechanics

Actin provides a force pushing the cell membrane outward, and
increases membrane tension. Work by Orion Weiner and others
has shown that membrane tension quenches protrusive activity at
the cell rear (long range inhibition). Our work shows that tension
has a dual role: In concave regions it can also act as a local
activator of cellular protrusions in form of blebs.




Current members Alumni

Richard Tyson, QuimP, S Mike Downey, LineageTracker
Blebbing in Dictyostelium P 4-

Ingrid Tigges, Microfluidics
experiments, now working for

Chengjin Du, CellTracker: Mathworks

Quantifying transcription factor
dynamics, 3D cell reconstructions

Robert Lockley, Modelling Main Collaborators

cell polarity Graham Ladds, Warwick Medical School
Rob Kay, MRC-LMB, Cambridge
Kees Weijer, University of Dundee
Len Stephens, Babraham, Cambridge

Neil Venables: Microtubule
dynamics
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