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Cell tracking using multi feature global optimisation  

t1% t2% t3%

Graph: consists of nodes (vertices) and edges 
 

•  LineageTracker: ERASysBio project to investigate the connection between the cell cycle and the 
clock using FUCCI markers (tracking cell nuclei) 

Feillet C, Krusche P, Tamanini F, Janssens RC, Downey MJ, Martin P, Teboul M, Saito S, Lévi FA, Bretschneider 
T, van der Horst GT, Delaunay F, Rand DA. Phase locking and multiple oscillating attractors for the coupled 
mammalian clock and cell cycle. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9828-33. 



Similarity (weight) matrix can account for multiple features: 
•  distance of cells 
•  differences in brightness, area, shape 
•  cell state (dividing, post division) 
•  multiple channel information … 
 
Weights describe the probability P that two cells at subsequent time points are 
identical. 
 
P can be converted into a cost (1-P). Standard methods from linear algebra for 
minimising the total cost exist (Hungarian algorithm and derivates) 

Weight matrix W: edges weighted according to similarity of nodes 



The graph Laplacian matrix L=ATCA incorporates both, the structure and 
weights 
 
L is the discrete version of the continuous Laplace operator 

 
L = div grad = δ2/δx2  

 
 
 
 
 
  

Adjacency matrix A captures the 
structure of the graph 

Constitutive matrix C containing weights 
for each edge 



Random walks for image segmentation 
 
Graph Laplacian L = div grad = δ2/δx2 
 

L is associated with diffusion problems or random walks. 
 
Fick’s 2nd law of diffusion:   δu/δt = D δu2/δx2 
 
u: concentration, electric potential, temperature, image brightness 
 
Laplace’s equation:     δu2/δx2 = 0   (stationary) 
 
Laplace’s equation can be solved by minimizing the Dirichlet integral 
(potential energy). In effect, diffusion smoothens out all gradients. 
 
Dirichlet integral         where    = grad 
 
 
The corresponding problem on a graph is solved by finding: 
 

min ½ uTLu = ½ Σ |ui - uj|2 

 
with suitable boundary conditions 
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C. Random walks and combinatorial harmonic functions

Harmonic functions defined on graphs with given Dirichlet
boundary conditions have seen recent interest in many ap-
plications, including image filtering [32], image colorization
[33] and machine learning [34]. Although purely combinatorial
harmonic functions were studied as early as 1945 by Eckmann
[35], the earliest use of combinatorial harmonic functions that
the author is aware of was an application to circuit layout
given by Kodres [36]. Combinatorial harmonic functions were
also famously employed by Tutte for graph drawing [37]. For
an excellent collection of current knowledge on combinatorial
harmonic functions, see [10].
Random walks first appeared in computer vision in the

early work of Wechsler and Kidode for texture discrimination
[38]. More recently, the average hitting time of a random
walk from an object boundary has been studied as a measure
to characterize object shape [39]. The isoperimetric graph
partitioning algorithm introduced in [40] was shown to have
an interpretation in terms of random walks in the sense that
hitting times are computed from all nodes to a designated
node and these values are thresholded to produce a partition
that has various beneficial theoretical properties. This approach
was recently applied to automatic image segmentation [30]
by choosing the designated node randomly and recursively
partitioning until a measure of partition quality is violated.
Recently, various steady-state properties of random walks

have also been used to define automatic clustering algorithms.
Harel and Koren [41] employ the notion of escape probabilities
on subgraphs to iteratively weaken graph edges and eventually
break the graph into disconnected components. Yen et al.
[42] use the notions of average first-passage time and average
commute time to replace traditional shortest-path distances
between nodes in a graph and show that standard clustering
algorithms (e.g., K-means) produce better results when applied
to these re-weighted graphs. Both of these methods represent
automatic clustering algorithms (as opposed to the seeded
method here) and require either extensive computations to
produce pairwise random walk quantities for each pair of
nodes, or employ a heuristic method of employing subgraphs
to restrict the computation. The advantage of examining the
probabilities that random walkers first arrive at predefined
traps (given by the seed points) considered here is that
the probabilities may be computed quickly and the various
properties of noise robustness and harmonic functions (e.g.,
mean-value theorem, etc.) examined in Section IV-C may be
used to characterize the algorithm’s behavior. Furthermore,
these approaches require the specification of additional free
parameters beyond what are necessary in the present approach.
Newman uses concepts from random walks to introduce a

notion of “betweenness” on the nodes on a graph by consider-
ing a node’s “betweenness” measure to be equal to how often
a random walk starting at any pair of nodes passes through
the node, averaged across all pairs [43]. Such a measure is
shown to offer more intuitive behavior over other methods of
“betweenness” computation at the cost of an expensive matrix
inversion.

III. EXPOSITION OF THE ALGORITHM

Although the random walker algorithm was motivated in
the introduction by placing random walkers at pixels and
noting which seeds they first arrive at, such a method of
computation would be completely impractical. Fortunately,
established connections between random walks and potential
theory (or circuit theory, on a graph) provide us with a
simple, convenient method for analytically computing the
desired probabilities. This section describes three aspects of
the algorithm: Generating the graph weights, establishing the
system of equations to solve the problem and the practical
details of implementation.
We begin by defining a precise notion for a graph. A graph

[44] consists of a pair G = (V,E) with vertices (nodes)
v ∈ V and edges e ∈ E ⊆ V × V . An edge, e, spanning
two vertices, vi and vj , is denoted by eij . A weighted graph
assigns a value to each edge called a weight. The weight of an
edge, eij , is denoted by w(eij) or wij . The degree of a vertex
is di =

∑

w(eij) for all edges eij incident on vi. In order to
interpret wij as the bias affecting a random walker’s choice,
we require that wij > 0. The following will also assume that
our graph is connected and undirected (i.e., wij = wji).

A. Edge weights

In order to represent the image structure (given at the
pixels) by random walker biases (i.e., edge weights), one
must define a function that maps a change in image inten-
sities to edge weights. This is a common feature of graph
based algorithms for image analysis and several weighting
functions are commonly used in the literature [14], [20], [45].
Additionally, it was proposed in [46] to use a function that
maximizes the entropy of the resulting weights. In this work
we have preferred (for empirical reasons) the typical Gaussian
weighting function given by

wij = exp (−β(gi − gj)
2), (1)

where gi indicates the image intensity at pixel i. The value
of β represents the only free parameter in this algorithm.
We have found it useful to normalize the square gradients
(gi − gj)

2 ∀eij ∈ E before application of (1). Of course, (1)
could be modified to handle color or general vector-valued data
by replacing (gi − gj)2 with ||gi − gj ||2 for a vector-valued
gi. Additionally, for problem-specific domains, (1) could be
modified to apply to texture information, filter coefficients or
other image features.

B. Combinatorial Dirichlet problem

In the introduction, we noted that the combinatorial Dirich-
let problem has the same solution as the desired random
walker probabilities [4], [5], [10]. In this section, we review
the combinatorial Dirichlet problem and show how to find its
solution.
The Dirichlet integral may be defined as

D[u] =
1

2

∫

Ω
|∇u|2dΩ, (2)



Supervised segmentation: user provide boundary conditions 
(partitioning of a graph) 

% Consider diffusion on 
the graph with node 1 
as source and node 5 
as sink. Diffusion is 
limited across edges 
with low similarity, ie 
where we have steps in 
the image. Anisotropic 
diffusion preserves 
edges. 
 
 
 
 
  

Pfg > Pbg : assign pixel to foreground 
Pbg > Pfg : assign pixel to background 
 
Probabilistic framework allows to put confidence 
limits on segmentation, for example to restrict 
processing to regions of high confidence 
 
  



 
Advantages of the random walk segmentation (and its many variants) 
 
•  Multi object segmentation possible (cell cluster) 
•  Enables neutral segmentation (separating cells with identical 

intensities) 
•  Works in 3D 
•  Multiple features can be integrated (intensity, texture, multiple colour 

channels, …) 
•  Computationally very efficient 
•  Sound theoretical basis 

CellTracker software: Measuring nucleus-cytoplasmic translocations of 
transcription factors 

Xue M, Momiji H, Rabbani N, Barker G, Bretschneider T, Shmygol A, Rand D, Thornalley PJ. Frequency 
modulated translocational oscillations of Nrf2 mediate the ARE cytoprotective transcriptional response. Antioxid 
Redox Signal. 2014 Sep 2. [Epub ahead of print] 



Segmenta=on% PreJprocessing%

Spherical%
parameteriza=on%

Surface%expansion%

Shape%analysis%

3D analysis of neutrophil motility using Laplacian approaches 

Du et al., Cytometry A, 2010 
Du et al., ISBI 2011 
Du et al., ISBI 2012 
Du et al., BMVC 2012 
Du et al., BMC Bioinformatics, 2013!

with Len Stephens & Phil 
Hawkins, Babraham%



Quantifying shape deformations 
 
Problem: find corresponding nodes 
on two surface meshes  
 
 
•  Rigid transformations 

•  Using fiducial markers 
 
•  3D shape matching using spherical parameterisation 

•  Direct feature matching (curvature/intensity, …) using spectral 
coordinates (modes/eigenvectors of the graph Laplacian) to 
constrain the problem (regularisation)   

•  Deformable contours/surfaces (QuimP) 

total running time increase from 4.29 s to 216.12 s when
the degrees of SPHARM increase from 10 to 42, where
the majority of time is consumed for expansion, i.e. to
obtain the coefficients.

Discussion
In this paper, we develop algorithms for different steps
in our framework in a formalized way using Laplacian
approaches. Each method can be viewed from the per-
spective of exploring eigenfunctions of the Laplacian
matrix. Although different affinity matrices are used for
the first three steps, i.e. the weights defined are
application-driven, all of them are symmetric (A(i, j) =A

(j, i)), positive preserving (A(i, j) ≥ 0) and positive semi-
definite (for all x in RN, x′Ax ≥ 0). In addition all
minimize a quadratic distortion measure, naturally lead-
ing to the eigenfunctions of Laplacian-type operator
[43]. In the fourth step, we use SPHARM for shape rep-
resentation, which are eigenfunctions of the spherical
Laplacian ΔΩ. Therefore, all the techniques used in the
first four steps are closely connected. Indeed, it was
shown in [44] that the Laplacian of a graph is the
discrete analogue of the Laplace-Beltrami operator on
manifolds. The spherical Laplacian ΔΩ is the Laplace–
Beltrami operator on the unit sphere Ω.
As the affinity matrix for cell segmentation satisfies the

conditions of symmetry and pointwise positivity, the pair-
wise similarities can be interpreted as edge flows in a
Markov random walk on the graph [45]. To perform the
random walk segmentation, instead of solving the linear
system of Eq. (4), one may precompute several eigenvectors
of the Laplacian matrix and use this information to pro-
duce an approximation of the random walker segmentation
algorithm [46]. The approximation can be viewed from the
standpoint of distance in the “spectral coordinates” space
defined by the weighted generalized eigenvectors.
Furthermore, all the methods used in the four separate

steps are closely related to the problem of heat diffusion.

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)
Figure 5 Topology fixing of an example stack with Euler
number −5. (a) The original binary volume; (b) 1.5-sets of the
embedding function; (c) The binary volume without fine protrusions;
(d) The detected protrusions; (e) The binary volume (c) merged with
the protrusions that have spherical topology; (f-h) The final topology
fixing results by our method (f), results obtained by SPHARM-PDM
(g), and SPHARM-MAT (h). Three holes, each of which was fixed by
our method, can be seen from this viewpoint, highlighted by red
circles and black arrows. The modification is small, with 0.42%
difference between the fixed (f) and the original volume (a). While
SPHARM-MAT introduced even fewer artefacts (0.06%), and SPHARM-
PDM 0.83%, none of the holes were filled by SPHARM-MAT (h), and
only two of them were filled by SPHARM-PDM (g).

(a) (b)

(d)(c)

(e) (f)
Figure 6 Synthesized cell where an artificial ball has been
inserted into the membrane and its corresponding shape
representation with SPHARM. (a) Synthesized cell, (b-f) SPHARM
degrees of 10, 20, 30, 42, and 78. It is not sufficient to use degrees
up to 10. From the models with degrees 20 onwards, we can easily
identify the inserted ball and reconstructions improve with
increasing SPHARM degrees.

Du et al. BMC Bioinformatics 2013, 14:296 Page 12 of 15
http://www.biomedcentral.com/1471-2105/14/296
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up to 178,000 vertices) using 15 different combinations of
features (totaling the computation of 3,960 correspondence
maps). This neuroimaging application reveals the full
power of FOCUSR where the introduction of additional
features significantly improves shape matching.

3.1 Benefits of Spectral Alignment
We first begin our validation by showing that FOCUSR
can find efficiently and precisely a dense correspondence
between generic meshes. We use the data from [61]
(available publicly2) where animal models have been de-
formed in various poses. These meshes were created in
[61] by transferring the deformation of a sequence of
source meshes to target reference meshes. We use in the
dataset the sequence of a galloping animal for a horse
(8,431 vertices, 50 frames), an elephant (21,887 vertices,
50 frames), and a camel (42,321 vertices, 50 frames), all
illustrated on Fig. 6. We want to recover the deformations
and assess the precision of the correspondences between
all models in a sequence and the reference model. For
each gallop animation, the same mesh is deformed, and
all vertices across the sequence maintain a direct one-to-
one correspondence with the reference mesh (i.e., node
i of any mesh in the animation corresponds with node
i (the same index value i) in the reference mesh). This
gives a ground truth for the correspondence maps in all
animations (i.e., �(i) = i) on which we can compare our
method.

We quantify precision by measuring the average dis-
tance between the locations of corresponding points found
with FOCUSR and with the ground truth. That is, for
all points v

i

2 V1 in the first mesh matching the points
v
�(i) 2 V2 in the second mesh, the mean distance error is

the average of the distances, 1
N

P

N

i

||x
i

� x

�(i)||, between
the real locations of the corresponding points, x

i

, and
their recovered locations on the second mesh, x

�(i). For
each gallop animation, we computed the correspondence
maps of the meshes of all frames with the reference mesh.
Fig. 7 shows the average relative distance error for all
sequences when finding the closest points in space, in
the spectral domain, and when using FOCUSR in its
simplest setting (i.e, K = 0 in Eq. (8)). Mismatches due
to nonrigid deformations (e.g., articulated limbs of the
galloping animals) are the most severe when matching
in the spatial domain, while these errors are attenuated
when matching occurs in the spectral domain (about a
60% increase in precision). FOCUSR improves precision
over the simple spectral matching by about 50%.

The relative average distance error in FOCUSR with
its standard deviation (expressed in percentage of the
size of a mesh) is for the whole horse gallop anima-
tion: 1.41%(±0.57%) with an average computation time
of 44 seconds, for the camel gallop: 1.42% (± 0.65%) in
79 seconds, and for the elephant gallop: 0.95% (± 0.54%)

in 98 seconds (timing were performed on a 2.8 GHz Intel
Pentium 4 using unoptimized Matlab code). We addition-
ally ran the same experiment on an animation of changing
facial expressions (15,941 vertices, 10 expressions) and
found a relative average error of 0.47% (± 0.26%) with

2. Meshes available at http://people.csail.mit.edu/

sumner/research/deftransfer

Fig. 8. Matching using FOCUSR on two models of the
Michael dataset. Corresponding points have a unique color
((r,g,b) components given by the first three eigenmodes).
Red lines indicates 50 random correspondences.

on average 40 seconds of computation. All these errors
remain relatively small with corresponding points found
at more or less 1% of the size of the mesh from their true
locations (e.g., for a mesh of 100 mm, an error of 1% is
a mismatch of 1 mm). Additionally, five points of interest
were tracked along each animation (between the ears, the
tail tip, right rear and front paw, and on the sternum of
the animals; and the right ear, left upper eyelid, nose tip,
lower lip, and chin of the head).

By applying a nonrigid alignment of spectral coordi-
nates, FOCUSR exhibits an improved level of precision (of
about 1.4% error) even in the absence of using additional
features. Higher errors often occurs in areas of high non-
rigid deformation, such as skin stretching (e.g., the side of
the horse undergoing expansion and compression while
galloping). One might also argue that displaced areas are
not necessarily errors (e.g., the skin could move freely over
a body by a few centimeters when galloping).

3.2 Benchmarking on Nonrigid Meshes
We now pursue our evaluation on a benchmark dataset
that presents a broader variety of non rigid deformations.
The high resolution TOSCA dataset [13] consists of 3
humanoids in various poses (Michael in 20 poses, each
with 52,565 vertices; David, 7 poses with 52,565 vertices;
Victoria, 12 poses, 45,659 vertices), a centaur (6 poses,
15,768 vertices), a cat (11 poses, 27,894 vertices), a dog (9
poses, 25,290 vertices), a horse (8 poses, 19,248 vertices)
and a wolf (3 poses, 4,344 vertices). Meshes within the
same class have again the same triangulation with vertices
numbered in a compatible way, thus establishing a ground
truth for correspondence maps (i.e., �(i) = i). We quantify
precision in a similar fashion to the previous experiment,
that is by measuring the displacement of correspondences
from their ground truth positions.

We first ran our experiment by matching all models
against their respective reference using the direct spec-
tral matching approach used earlier (i.e., finding pairs

Spectral alignment methods 

FOCUSR:!Feature!Oriented!Correspondence!Using!Spectral!
Regulariza8on99A!Method!for!Precise!Surface!Matching!
!
Herve%Lombaert,%Leo%Grady,%Jonathan%R.%Polimeni,%Farida%Cheriet%%
Pa#ern'Analysis'and'Machine'Intelligence,'IEEE'Transac7ons'on%,%vol.35,%no.9,%pp.
2143,2160,%Sept.%2013%
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Fig. 1. Example of eigenmodes for pairs of animals and
human brain surfaces. Each row shows the first five spec-
tral components of a model (eigenmodes of the associated
graph Laplacian, reordered and sign adjusted, so paired
sets match). The color scale indicates the value of the
spectral coordinate over the surface.

processing speed would make possible new brain studies
that were previously limited by computational burden, or,
more generally, studies on meshes that wish to use non-
standard features for driving the correspondence.

2 METHODS
We begin our exposition of FOCUSR by detailing a simple
technique for feature matching that does not preserve
smoothness of the mapping between surfaces (Fig. 2 a).
We then describe how spectral coordinates can be used to
regularize feature matching. We re-examine and improve
each step in the spectral correspondence process to over-
come previous limitations with spectral correspondence.
The algorithm is summarized in Fig. 3. Code implemen-
tation in Matlab is available at http://step.polymtl.ca/
⇠rv101/focusr.

2.1 Direct feature matching to provide vertex corre-
spondence
Assume that we have two graphs, G1 = {V1,E1} and
G2 = {V2,E2} (with vertices and edges) such that a corre-
spondence � : v

i

2 V1 ! v
j

2 V2 is desired. Note that we

do not require that |V1| = |V2| or |E1| = |E2| (i.e., meshes
can have different sizes and structures). Consequently,
there is no guarantee that the mapping is one-to-one and
may not be invertible. We will use the terms node, vertex
and point interchangeably to describe a member of V1 or
V2. Given a set of K features X

i

at every node v
i

2 V1,
and a set of K features Y

j

at every node v
j

2 V2, our goal
is to use these features to produce a correspondence �.

A direct feature matching approach to producing this
correspondence would be to set

�(v
i

) = min

vj2V2

||X
i

�Y

j

||, (1)

which could be computed quickly by precomputing a
Voronoi tessellation of the range space. Unfortunately, this
simple technique has several inadequacies. Specifically,
the technique based on the Voronoi tesselation does not
properly account for global changes in the feature space
(e.g., due to a global scaling or translation), nor does it
utilize the neighborhood structure provided by the edge
sets in any way (i.e., there is no spatial regularity to the
mapping in the sense that neighbors in the domain are
unlikely to remain neighbors in the range).

Global changes in the feature space can be accounted
for by using a more sophisticated point correspondence
than what is described in Eq. (1). Robust Point Matching
[18] with a Thin Plate Spline-based transformation is
often used for 2D or 3D registration. However, with this
approach the final registration depends on the number
and choice of the control points. A more recent approach
to the point correspondence problem is the Coherent Point
Drift (CPD) method [41] which is fast and demonstrates
excellent performance. To summarize this method, the
registration is treated as a Maximum Likelihood problem
where Gaussian Mixture Model centroids are fit into a
point set. There is no assumption on the global trans-
formation between point sets. Instead, the evolution of
the transformation is constrained with a motion coherence
[41]. The CPD algorithm offers the possibility to perform
matching on a subset of the points (for increased speed)
while computing the transformation in the continuous
domain (i.e., the continuous transformation, found with
only a subsample of V1 and V2, can be applied on all
points of V2 and thus find a dense matching between V1

and V2). Furthermore, each feature (i.e., each coordinate
of X

i

or Y

j

) can be weighted in order to accentuate or
reduce its influence.

Although CPD provides a method to account for global
transformation in the feature space between the two
graphs, it is still necessary to incorporate spatial regularity
into the mapping such that neighboring points in V1 map
to neighboring points in V2. Note that a strict neighbor-to-
neighbor mapping is only possible when the two graphs
are isomorphic. Since we target a more general scenario,
we want to account for neighborhood relationships by
promoting a correspondence that maps nearby nodes in
V1 (based on E1) to nearby nodes in V2 (based on E2).
Our strategy for promoting spatial regularization is to
supplement X

i

and Y

j

with the spectral coordinates at
nodes v

i

and v
j

before applying the CPD point correspon-
dence. The values of the spectral coordinates over a few
sample surfaces are illustrated on Fig. 1. The fundamental

Fig.%1.%Example%of%eigenmodes%for%pairs%of%animals%and%human%brain%surfaces.%Each%row%
shows%the%first%five%specJ%tral%components%of%a%model%(eigenmodes%of%the%associated%
graph%Laplacian,%reordered%and%sign%adjusted,%so%paired%sets%match).%The%color%scale%
indicates%the%value%of%the%spectral%coordinate%over%the%surface.%

Eigendecomposition 
of the graph Laplacian 
matrix it its 
eigenmodes 
(eigenvectors) reveals 
strong 
correspondences 
between shapes 
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Correspondence using 
FOCUSR 

(improved matching) 

For all points vi: 
   i = (x(1), x(2), x(3))i!

Matching with 
FOCUSR: 

min! ||    i –     !(i)|| 

Corresponding points: 
  !(i) = (x(1), x(2), x(3)) !(i)!

Relative error of the 
Correspondence map 

(in %, lower the better) 
Average error: 1.46% 

Spectral embeddings in 3D 
   (red) and     (blue)!

(a) Finding closest point in space (missed legs) (b) Finding closest point in the spectral domain (matched legs) 

(c) Using FOCUSR in its simplest setting (nonrigidly deformed embeddings) 

Fig. 2. Direct matching (coloring indicates correspondence, and links and circles indicate matching of leg extremities,
crosses indicate ground truth) : (a) Finding closest points in space: this naive correspondence map is computed by
finding for each point of model X its closest point in space of model Y (match X with Y ). As illustrated, this strategy is
dependent on rigid and nonrigid deformations and generates an inconsistent correspondence map. (b) Finding closest
points in the spectral domain: the correspondence map is computed by finding for each point of model X its closest
spectral equivalent in model Y (match X with Y instead of X with Y ). As illustrated, even though the meshes are not
aligned in space (they are translated), their spectral embeddings (red is X , blue is Y, both use three eigenmodes for 3D
visualization) are almost perfectly superimposed. Spectral embeddings are much less dependent on rigid and nonrigid
deformations, and finding closest points in the spectral domain generates a much better correspondence map (2.02%
average error). FOCUSR in its simplest setting : (c) Our method performs matching in the spectral domain (with lower
error over the surface) and improves the alignment of the spectral embeddings. Note that no additional features are used
here in FOCUSR.

difference between the use of X and Y as general feature
vectors (illustrated with 3D coordinates (x, y, z)) and as
spectral coordinates is demonstrated in Fig. 2 b. The low-
frequency spectral coordinates are dependent on the ge-
ometry of the surface, and these coordinates are effectively
more stable across articulated shapes or highly deformable
shapes, i.e., normalizing these shapes in a same referential.
Additionally, they are known to be spatially smooth (see
below) in accordance with the low-frequency harmonics of
an elastic surface [28]. In the next section we will review
spectral coordinates, and demonstrate improvements to
traditional methods for solving some of the difficulties
associated with comparing spectral coordinates from two
graphs.

2.2 Spectral Coordinates

We may define the |V | ⇥ |V | adjacency matrix W of a
graph in terms of affinity weights (see [28]), which are
derived from a given distance metric dist(i, j) between
two neighboring vertices (v

i

, v
j

). The elements of the
weighted adjacency matrix are given by

W
ij

=

(

1/ dist(i, j) if 9 e
ij

2 E ,

0 otherwise
(2)

The matrix W provides a weighting on the graph edges
derived from the given distance metric. The distance may
be derived from the geometry via the vertex coordinates
x = (x, y, z)T embedded in space (e.g., dist(i, j) = kx

i

�x

j

k,
the distance between nodes v

i

and v
j

), from feature vec-
tors (e.g., dist(i, j) = kF

i

�F

j

k, where F = (f

(1), . . . , f (K)
)

T



QuimP: ImageJ plugins for quantifying cellular morphodynamics 

Linking outlines through time 

Fluorescence measurements 

ANA – Intensity 
sampling 

Segmentation 

BOA – Cell outline tracking 

Region tracking 

ECMM – Region 
Mapping 

Dormann et al., Cell Motil. Cytoskeleton, 2002; Bosgraaf et al., ibid., 2009 go.warwick.ac.uk/quimp 



 Active contour based methods for automated cell outline detection 

%%image%force%

central%force%

contrac=on%force%

Dormann,%Libo_e,%Weijer%&%Bretschneider,%Cell%Mot.%Cytoskeleton,%2002%



T'

T+1'
Tyson%et%al.:%High%Resolu=on%Tracking%of%Cell%
Membrane%Dynamics%in%Moving%Cells%
Math.%Model.%Nat.%Phenom.%Vol.%5,%No.%1,%2010%

Field%lines%do%not%cross%

Jve%Charge%

Electrostatic Contour Mapping Method 



Warwick Systems Biology%

Imaged volume"

z – stacking"
(~2700 slices, 2.6 micron spacing)"

Embryo"Light Sheet"

Imaging Lens"

Illumination"
lens"

2560 pixels (0.65 microns per pixel)"

400 pixels"
(0.46 microns 

per pixel)"

Light Sheet Fluorescence Microscopy"

188%sec%frame%interval%
(~12%hour%imaging%=me)%



Warwick Systems Biology%

Adding GPU capabilities – Netstore NA255A"

PCI%express%3.0%

4%GPUs%share%
bandwidth%≈%16,000%
MB/s%%%(16%GB/s)%
%
Available%to%all%remote%
users%



Warwick Systems Biology%

Surface detection "
Itera=vely%warp%sampling%windows%to%
the%surface.%Score%intensity,%variance,%
and%‘sharpness’%(via%FFT%transform)%



Warwick Systems Biology%

Flow analysis using local registration"



Warwick Systems Biology%

3D visualisation"

live%demo%



Warwick Systems Biology%

Real Time Tracking"





Dictyostelium:  
Chemotaxis towards cAMP 

(Hans Faix) 



Dictyostelium Chemotaxis: 
 Actin-Assembly at the Front and Myosin-II Recruitment to the Tail 

Red:%%%%Polymerized%ac=n%
%%%%%%%%%%%%(mRFPJLimE%Δ%coil%probe)%

Green:%Myosin%II%
%%%%%%%%%%%%(GFP%–%heavy%chain)%

Frame%interval:%5%seconds%

movie%by%J.%Dalous%



Regulation of Actin polymerization at the front and 
Myosin-II contraction at the rear 

Zatulovskiy, Tyson, Bretschneider & Kay. JCB, 2014!

Bleb-driven chemotaxis • Zatulovskiy et al.
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S1

JCBSupplemental material

Zatulovskiy et al., http://www.jcb.org/cgi/content/full/jcb.201306147/DC1

Figure S1. Mapping of genes screened onto chemotactic network. The genes whose mutations were tested for altered blebbing are mapped onto our 
current understanding of the signaling and effector network underlying chemotaxis to cyclic-AMP. Null (or hypomorphic in the case of Arp2/3) mutants 
were compared with their direct parents in three assays for blebbing using aggregation-competent cells: movement under buffer; movement under an 
agarose overlay; blebbing in response to uniform stimulation with cyclic-AMP. A combined score was given to each strain for mapping purposes. 
Gray, no detectable effect; blue, mutants have impaired blebbing (deep blue > light blue); red/orange, mutants have increased blebbing (red > or-
ange); no color, not tested.



Questions 

%
How%can%we%extract%quan=ta=ve%data%of%complex%spa=oJ
temporal%dynamics?%
%
Can%we%use%mathema=cal%modelling%to%understand%the%most%
basic%circuitry%underpinning%cell%polarisa=on?%
%
Do%unique%solu=ons%exist%for%a%par=cular%model?%
%



green:%Ac=n%label%
red:%phase%contrast%

Polarity reversal at high shear-stresses (2.1 Pa) 
  

Response of Dictyostelium to shear flow 
  

with G. Gerisch & F. Bruckert: Dalous et al., Biophys. J., 2008 

Ingrid Tigges, Warwick 
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Model Fitting 

Nodes%

Diffusion%between%nodes%

•  Implementa=on%in%Po_ersWheel%(MATLAB)%
•  Experimental%data:%Ac=vator%variable%resembles%ac=n%fluorescence%

sampled%at%P=20%points%in%the%cell%cortex%
•  1D%PDE%model%on%a%closed%circle%(periodic%boundary%condi=ons)%
•  Finite%difference%discre=za=on%

•  NJvariable%PDE%problem%is%expressed%as%system%of%PxN%ODEs%
•  Standard%ODE%solvers%(RK45)%and%NLLS%methods%(Gauss%Newton%TrustJ

region)%for%fiNng%can%be%used%

!!!! !!! ≈ !!!! − 2!! + !!!! ∆! !!
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Red: emerging new front, black: linearly decaying old front 
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Reducing the Meinhardt model 

•  Inhibitor B turns out to stay almost constant 

•  replace it by B(P)=1+β0(P2 +β1P) where P is the pressure in Pascal 

•  dy(P=0) = 0, and dy(P) = const%
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Removing inhibitor B from the Meinhardt model 

high%shear % % % %low%shear% % % %flow%to%noJflow%
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Making predictions: stable movement at P=1Pa 

Levchenko%
(significant%parameter%
change%required)%
%
%
2Jvariable%Meinhardt%
(parameters%as%before:%
front%splits%in%three)%
%
2Jvariable%Meinhardt%
with%DC%decreased%by%20%%
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Fitting spontaneous movement of single cells 
(convolution performed by deterministic PDE models helps interpreting the underlying 

stochastic process, estimating timescales of how determined a system actually is) 



Figure 2 Figure 4 Figure 5 Figure 6 
Parameter Value Parameter Value Parameter Value Parameter Value 
 
Meinhardt Model Modified Meinhardt Modified Meinhardt (E) Modified Meinhardt 
DA 4.274x10-2 DA 4.415x10-2 DA 4.415x10-2 DA 2.311x10-3 

DC 9.513x10-2 DC 9.768x10-2 DC 7.064x10-2 DC 1.471x10-8 

ba 0.2881 ba 0.2776 ba 0.2776 ba 0.1438 
bc 0.2022 bc 0.2076 bc 0.2076 bc 5.643x10-2 

ra 0.2371 ra 0.2393 ra 0.2393 ra 9.467x10-2 

rc 0.2346 rc 0.2378 rc 0.2378 rc 6.552x10-2 

sa 5.833x10-3 sa 5.647x10-3 sa 5.647x10-3 sa 3.054x10-3 

sc 0.3534 sc 0.3397 sc 0.3397 sc 0.2791 
rb 1.000x10-5  
 β0 6.081x10-3 β0 6.081x10-3  

dylow 1.318x10-2 β1 1.840 β1 1.840 
dyhigh 1.281x10-2 dy 1.280x10-2 dy 1.280x10-2 

 

Levchenko Model  Levchenko Model (C) Levchenko Model 

DI 1.062x10-5 DI 1.062x10-1 DI 3.182x10-4 
KA 1.161x10-3 KA 1.161x10-3 KA 1.451x10-3 
K-A 5.882x10-3 K-A 5.882x10-2 K-A 1.776x10-3 

KR 1.120x10-5 KR 1.120x10-5 KR 1.418x10-4 

K-R 1.300 K-R 1.300 K-R 0.3330 
KI 5.900x10-4 KI 5.900x10-4 KI 1.151x10-5 
K-I 4.405x10-2 K-I 4.405x10-2 K-I 1.007x10-5 
RT 13430 RT 13430 RT 155.7 
dylow 0.7963 dylow 0.7963  
dyhigh 2.898x10-5  
 
Otsuji Model 
DU 1.390x10-5 

DV 47.29 
a1 0.3833 
a2 0.2878 
dylow 7.621x10-2 

dyhigh 8.239x10-2 

 
 

Original%Meinhardt%
3Jvariable%

Meinhardt%2Jvariable%
(iden=fiable)%

Meinhardt%2Jvariable%
Single%stable%front%

Meinhardt%2Jvariable%
Random%mo=lity%

Parameters 



Summary Reorientation 

•  Well-established tools (Potterswheel) for fitting systems of ODEs 
can be used to fit reaction-diffusion models. The most simple 
approach is based on a finite-difference discretization of the 
diffusion operator.  

•  Profile likelihood estimations helps immensely to evaluate the 
identifiability of models. 

•  Two popular models for cell orientation (Meinhardt and Levchenko) 
fit similarly well. A reduced version of the Meinhardt model is fully 
identifiable. 

•  Predictions help to further constrain parameters. Long term stability 
of single fronts can be achieved by a 20% reduction of DC, the 
diffusion constant of the inhibitor. 

•  We are able to fit single cell data of randomly migrating cells. 
Because they need to produce simultaneous fronts, the derived 
parameter set is significantly changed.  



with Evgeny Zatulovskiy, Rob Kay 
(MRC LMB, Cambridge) 

 

Spinning%disk%microscopy%(4.5%fps)%
Confocal%microscopy%(2%fps)%

FJac=n%marker:%GFPJABD%(ABPJ120)%

cAMP%cells% cells%

gradient%

AGAR%

Front%

Migration under agarose induces blebbing in Dictyostelium 
 

5 of 18Bleb-driven chemotaxis • Zatulovskiy et al.

appeared as spherical caps with a height of 0.93 ± 0.11 µm,  
average bleb surface area of 8.3 µm2, or roughly 1.8% of total 
cell surface area, and average bleb volume of 3.0 µm3, or 0.5% 
of total cell volume (assuming S = 450 µm2 and V = 600 µm3; 
Traynor and Kay, 2007).

Blebs and pseudopods have characteristically different 
actin dynamics: F-actin remains continuously associated with the 
membrane as pseudopods expand, whereas in blebs it is sharply 
reduced as the bleb detaches from the cortex (Fig. 4 A). Cortical 
F-actin was estimated during bleb formation using QuimP10 
software to measure ABD-GFP !uorescence within 0.7 µm of 
the membrane: the !uorescence drops by 78.0 ± 6.3% during 

including !uorescent dye (RITC-dextran) in the agarose as a 
negative stain (Fig. 2 B; and Video 6). Both blebs and pseudo-
pods form under these conditions, and we initially analyzed  
reference sets with software based on QuimP10 and using the 
electrostatic contour migration method to analyze the fast and 
small displacements of the plasma membrane during blebbing 
(Tyson et al., 2010).

Bleb expansion is very abrupt, lasting only about half a 
second, with the peak projection speed of 1.78 ± 0.74 µm/s 
(mean ± SD; n = 37; fastest speed of 4.93 µm/s) being approxi-
mately three times faster than actin-driven pseudopods (0.59 ± 
0.23 µm/s; n = 88; fastest of 1.15 µm/s). In most cases blebs 

Figure 3. Parameters regulating bleb-driven movement. (A) Blebbing increases as cells prepare for multicellular development. Bleb frequency was 
measured after different times of starvation (with cyclic-AMP pulsing) in cells randomly moving under buffer, or after addition of 1 µM cyclic-AMP; results 
are the mean of three separate experiments, in each of which 40–80 cells were analyzed at each time-point. (B) Blebbing increases as the concentration 
of agarose in the overlay is increased. Blebs given as percentage of total projections (blebs + pseudopods). (C) Decreasing cell height with increasing 
agarose concentration in the overlay, as determined from confocal images (see Video 5 for reconstructions of cells at different agarose concentrations and 
for the movement of fluorescent beads in the agarose as cells pass). (D) Dependence of Young’s modulus on the agarose concentration. Agarose elasticity 
modulus was measured by indentation with a spherical tip at 0.06 mm/s; average of three replicates for each concentration. Ax2 cells expressing the 
F-actin reporter ABD-GFP, to help bleb identification, were used throughout.
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M2%melanoma%cell%line%
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~10J30%sec%%

Charras%(2008)%
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Net%hydrosta=c%pressure.%
Myosin%II%contrac=on%

Blebbing is driven by Myosin-II dependent pressure 



Cellular!blebbing!
%

•  MyosinJII%dependent,%driven%by%hydrosta=c%pressure%
•  Ouen%found%in%cells%moving%in%3D%constrained%environments%

(zebrafish%primordial%germ%cells,%tumor%cell%migra=on)%

How!can!cells!direct!blebs!to!the!cell!front?!How!do!blebs!and!
ac8n!based!protrusions!interact?!

•  Previously%known%regulators%of%bleb%site%selec=on:%
Weakening%of%the%actoJmyosin%cortex,%local%contrac=on%of%
myosinJII,%asymmetric%distribu=on%of%membraneJcortex%
linkers%

•  New:%Cell%geometry%and%membrane%tension%are%important%
factors%in%bleb%site%selec=on,%too%



ECMM-APT: Automatic Protrusion Tracking 
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Negative curvature promotes blebbing 
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Blebs Nucleate at the Flanks (Armpits) During Chemotaxis 
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Chains of blebs under 2% agarose (bleb only mode) 



Actin driven protrusions can localize bleb nucleation in Dictyostelium 
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A biomechanical model for bleb initiation  
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Forces: Membrane tension, 
bending rigidity, intracellular 
pressure, Hookean springs link 
membrane and cortex. Linkers 
break above certain length. 
 
Actin cortex is considered fixed 
during blebbing, no regrowth of 
actin cortex at the naked 
membrane. 



Blebbing of Fundulus deep cells maintaining a highly curved waist 

Kindly provided by Rachel Fink, Mount Holyoke College  
 



Long term goal: Linking biochemistry and mechanics 
 
•  Actin provides a force pushing the cell membrane outward, and 

increases membrane tension. Work by Orion Weiner and others 
has shown that membrane tension quenches protrusive activity at 
the cell rear (long range inhibition). Our work shows that tension 
has a dual role: In concave regions it can also act as a local 
activator of cellular protrusions in form of blebs.  

Summary Blebbing 
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