How to manipulate p53 isoform to restore tumour suppressor activity

Jean-Christophe (JC) Bourdon, PhD Fellow, Breast Cancer Campaign, 2012-2017

> Cancer Research Division Dundee Cancer Centre **University of Dundee**

Introduction

- *p53* is one of the most frequently mutated genes in human cancers (International Cancer Genome Consortium)
- *p53* KO mice are cancer prone
- Cancer-prone families who develop several types of cancer, particularly in children and young adults (Li-Fraumeni syndrome) present germ-line mutation of the *p53* gene.

Khoury MP and Bourdon JC, p53 isoforms: An intracellular microprocessor? Genes Cancer. 2011 Apr;2(4):453-65.

In absence of cellular stress

Cellular stress (DNA damage, virus, oncogene activation, Hypoxia, pH, temp.)

p53 p{p53 p{p53 p53) p53(p{p53}p{p53 p.53 RNA Pol. RRRCWWGYYY (0-13bp) RRRCWWGYYY (0-13 bp) RRRCWWGYYY (0-13bp) RRRCWWGYYY R=G/A, W=A/T, Y=C/T (23808 ways to write a p53RE)

> El-Deiry et al., 1992 Bourdon et al., 1997

Problem:

It is still difficult in clinical studies to link p53 mutation status to:

- cancer prognosis
- cancer treatment

p53 mutation status can be associated with poor prognosis

Kaplan-Meier survival curves

Consider the pattern RRR-C-WW-G-YYY where R, W & Y can all take on one of the values A, C, G or T. For R, permitted values are A & G, while C & T are incorrect. For W, permitted values are A & T, while C & G are incorrect. For Y, permitted values are C & T, while A & G are incorrect.

Since each of the R, W & Y components can take on 4 different values there are $4^8 [= 2^{16} = 65536]$ different possible combinations. We wish to count the number of mistakes that can occur in the pattern.

We wish to identify the number of different combinations of R, W & Y which contain precisely k mistakes, for k=0 to 3.

Suppose that the pattern contains k mistakes. There are ${}^{8}C_{k}$ different ways of fixing k of the 8 components to be incorrect, and each component can be incorrect in just 2 ways, while each of the remaining (8-k) components is correct in 2 ways.

Therefore there are just ${}^{8}C_{k} * 2^{k} * 2^{(8-k)} = 2^{8} * {}^{8}C_{k} = 256 * {}^{8}C_{k}$ ways in which k precisely errors can occur.

The following table shows the values obtained.

k	⁸ C _k	$256 * {}^{8}C_{k}$	
0	1	256	_
1	8	2048	
2	28	7168	
3	56	14336	
	_		is to write a pE2DE, DDDCW/W/CV

Total 23808 ways to write a p53RE: RRRCWWGYYY

Note that, by definition, ${}^{n}C_{k} = \frac{n!}{k!(n-k)!}$ so that ${}^{8}C_{k} = \frac{8!}{k!(8-k)!}$ where $\mathbf{r}! = 1*2*3* \dots *\mathbf{r}$ is the product of the first \mathbf{r} integers. The term $\mathbf{r}!$ is pronounced r-factorial.

Questions about p53:

1- How one protein, p53, can be responsive to so many stress signals at once?

2- How can p53 specifically bind to so many p53REs, different in DNA sequences and DNA structure?

3- How do p53 "decide" the target genes to be expressed in order to trigger a coordinated and defined cellular response adapted to the damages and the tissue type ?

p53 is the most frequently mutated gene in large variety of human cancers

http://www.sanger.ac.uk/genetics/CGP/cosmic

	mutation	tumours	%
TP53	22505	69620	32.33
KRAS	22720	98127	23.15
EGFR	10649	49455	21.53
Braf	20002	100844	19.83
CDKN2A	3910	24818	15.75
PTEN	2358	18300	12.89
РІКЗСА	3611	29094	12.41
IDH1	3194	27936	11.43
RB1	362	3827	9.46
NRAS	2647	33500	7.90
HRAS	765	22015	3.47
c-met	162	5932	2.73
ERBB2	157	9930	1.58
Akt1	134	9274	1.44

p53 plays a pivotal role in cancer formation and progression

http://cancer.sanger.ac.uk/cosmic/g	ene/analysis 🔎 🔻 🖒 🌆 COSMIC: Gene analysis - T	×			
Tissue	Point Mutations		Tissue	Point Mutations	
	% Mutated 🗘	Tested \$		% Mutated 🗘	Tested
Adrenal gland		<u>190</u>	Adrenal gland		349
Autonomic ganglia		553	Autonomic ganglia		602
Biliary tract		622	Biliary tract		2405
Bone		702	Bone		386
Breast		11460	Breast	-	3521
Central nervous system		<u>5529</u>	Central nervous system		<u>1998</u>
Cervix	-	1200	Cervix		751
Endometrium		1128	Endometrium		2846
Eve		200	Eve	-	254
Fallopian tube		2	Fallopian tube		3
Gastrointestinal tract (site indeterminate)		1	Gastrointestinal tract (site indeterminate)		<u>1043</u>
Genital tract		31	Genital tract	-	<u>31</u>
Haematopoietic and lymphoid		<u>9428</u>	Haematopoietic and lymphoid	-	<u>8561</u>
Kidney	_	<u>1332</u>	Kidney	•	1256
Large intestine		12611	Large intestine		51735
Liver		3198	Liver	-	<u>1115</u>
Lung		<u>6542</u>	Lung		24908
Meninges	_	215	Meninges		<u>118</u>
NS		264	NS		366
Oesophaqus		3732	Oesophaqus	-	<u>1232</u>
Ovary		3675	Ovary		5215
Pancreas		1356	Pancreas		7220
Parathyroid		<u>16</u>	Parathyroid		<u>116</u>
Penis		<u>24</u>	Penis	-	28
Peritoneum		<u>44</u>	Peritoneum		<u>152</u>
Pituitary		<u>37</u>	Pituitary		300
Placenta	-	<u>24</u>	Placenta		2
Pleura	-	<u>147</u>	Pleura	-	118
Prostate		<u>1312</u>	Prostate	-	1624
Salivary gland		300	Salivary gland	-	363
Skin		2671	<u>Skin</u>	-	2919
Small intestine		143	Small intestine		568
Soft tissue		<u>1609</u>	Soft tissue	-	1809
Stomach		3707	Stomach	-	4095
Testis	-	<u>163</u>	Testis	-	441
Thymus		<u>74</u>	Thursid	-	6754
Thyroid	_	565	Honor peredipertive tract	-	2572
Upper aerodigestive tract		5195	Upper aerodigestive tract	-	23/3
Unnary tract		3/5/	Varias	-	1401
vaqina		28	Vulva		35
Vuiva		164	10110		<u> 22</u>

Questions about p53:

1- How one protein, p53, can be responsive to so many stress signals at once?

2- How can p53 specifically bind to so many p53REs, different in DNA sequences and DNA structure?

3- How do p53 "decide" the target genes to be expressed in order to trigger a coordinated and defined cellular response adapted to the damages and the tissue type ?

-> Is p53 "really" the only protein able to transactivate genes through p53 responsive element in response to various cellular stresses ?

p63 and p73 proteins are homologous to p53 protein

p63 and p73 proteins:

- contain a p53 DNA binding domain
- bind specifically to p53RE
- transactivate p53-inducible promoters in response to stress

Human p63 gene structure

Mutation of the p63 gene or loss of the p63 gene induce developmental defects

Ectrodactyly patients

p63 and cancer

- p63 gene is rarely mutated in human cancer.

- Δ Np63 isoforms are overexpressed in head and neck, lung, ovarian and nasopharynx tumours and are associated with poor outcome

- $\Delta Np63$ isoform expression is associated with chemoresistance in breast tumours and head&neck tumours

- TAp63 induce cellular senscence and inhibit cell proliferation

- Decreased TAp63 expression is associated with metastasis and poor outcome in bladder and breast cancers.

- TAp63 impair metastasis formation.

- <u>p53 tumour suppressor activity is reduced in p63/p73 deficient mice</u> (Flores et al., (2005) Cancer Cell 7: 363-373.)

Human p73 gene structure

p73 KNOCK OUT MICE EXHIBIT MULTIPLE DEFFECTS

Somatic growth defects Chronic inflamation, infection Hydrocephalus Hippocampal dysgenesis Defects in pheromone detection

Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. *Nature* 404, 99-103 (2000).

p73 and cancer

-TAp73 -/- mice are cancer prone (genomic instability). △Np73 isoform inhibits DNA-damage response pathway

 $-\Delta Np73$ -/- mice are hypersensitive to DNA damaging agents through p53-mediated apoptosis

-p73 gene is rarely mutated in human cancer.

 $-\Delta$ Ex2p73 and/or Δ Ex2/3p73 isoforms are frequently overexpressed in many human cancers (liver, ovarian, breast, vulvar, melanoma) (misregulation of alternative splicing)

 $-\Delta Np73$ isoforms are upregulated in many human cancers (neuroblastoma, hepatocarcinoma, glioma, lung, esophageal, ALL, ovarian)

- <u>p53 tumour suppressor activity is reduced in p63/p73</u> deficient mice (Flores et al., (2005) Cancer Cell 7: 363-373.)

Is p53 gene really so

different from the p63 and p73 genes?

(Bourdon et al., 2005, Genes&Dev)

a) Generacer PCR on human p53 mRNA

b) Structure of the human *p53* gene

The p53 gene structure is conserved through evolution

Marcel et al., 2011, Cell Death Diff Khoury et al., 2011, Genes & Cancer

p53 isoforms are expressed in normal human tissues in a tissue dependent manner

Human p53 gene

Human p53 protein isoforms

Nomenclature : p53 isoform workshop at IARC in Lyon, September 2010

SK-N-AS (p53R342X)

Alteration of the ratio mutant p53/p53 isoform can trigger cancer cell death

MDA-231 (p53R280K)

120 scientists coming from 26 countries attended the meeting http://www.iarc.fr/p53isoforms/

- -drosophila, zebrafish, mouse animal models
- -human stem cells, human cancer cells

(Bourdon et al., 2005, Gene & Dev)

Human p53 protein isoforms

p53 β and p53 γ modulate p53 α transcriptional activity in a promoter dependent manner

Marcel CDD 2014

p53 isoform expression is associated with breast cancer prognosis

Human p53 protein isoforms

Δ 133p53 β expression is associated with poor disease free-survival.

10% of primary breast tumours have gain of expression of Δ 133p53 β

Δ133p53β

MDA231-D3H2LN cells are more metastatic than MDA-231 cells and overexpress mutant ∆133p53 isoforms

WT or mutant ∆133p53 isoforms confer cell motility to breast cancer cells

WT or mutant ∆133p53 isoforms confer cell motility to colon cancer cells

Loss of p53 promotes cell migration and invasion in 3D matrices

Gadea G, de Toledo M, Anguille C, Roux P. J Cell Biol. 2007 Jul 2;178(1):23-30

WTp53 MEF

p53-/- MEF

Δ133p53β induces cell motility

WT \triangle 133p53 β binds directly to \triangle Np63 isoforms and potentiates repression of E-cadherin expression in luminal breast cancer cells (MCF7)

Mutant Δ 133p53 β binds directly toTAp63 β isoforms and inhibits TAp63 β transcriptional activity on E-cadherin promoter in triple-negative breast cancer cells (MDA231-D3H2LN)

IP Sapu INPUT IP IgG TAp63β (4A4) Δ133p53β (Sapu)

Human p53 protein isoforms

$\Delta 133p53\alpha$ does not inhibit p53-mediated G2 cell cycle arrest in response to doxorubicin

$\Delta 133p53\alpha$ inhibits p53-mediated apoptosis and G1 cell cycle arrest in response to doxorubicin

$\Delta 133p53\alpha$ inhibits p53-mediated transactivation of p21 probably through direct interaction with p53

Marcel et al., 2010, Oncogene

PAb421

 $\Delta 133p53\alpha$ does NOT act exclusively as an inhibitor of p53

Tumor conditioned medium from U87 cells transfected with si∆133p53 impairs HUVEC endothelial cell migration and tube formation

siRNA treated U87 in CAM model

Δ133p53 isoforms favour *in vivo* angiogenesis

Assessment of pro-angiogenic genes expression

Δ133p53 regulate ANG and MDK expression. ANG independently of p53

p53 isoforms regulate cell response to damage and cell differentiation signalling

- p53 isoforms regulate cell cycle progression, senescence, cell death, cell differentiation, cell migration and invasion, angiogenesis, embryo development and ageing.
- Wild-type and mutant p53 isoforms oligomerise with each other and with p63 and p73 isoforms
- p53 isoforms bind differentially to promoter region
- p53 isoforms modulate gene expression (mRNA and microRNA).
- p53 isoform expression is abnormal in several types of cancer
- p53 isoform expression is associated with prognosis of breast cancer patient

Questions about p53:

1- How one protein, p53, can be responsive to so many stress signals at once?

- p53 is not one protein, it is composed of a family of proteins encoded by p53, p63 and p73 genes that are differentially expressed in a tissue dependent manner.

2- How can p53 specifically bind to so many p53REs, different in DNA sequences and DNA structure?

- p53/p63/p73 protein isoforms can form oligomers which transactivate different promoters

3- How do p53 "decide" the target genes to be expressed in order to trigger a coordinated and defined cellular response adapted to the damages and the tissue type ?

Axololt

p53 is required for organ regeneration in vertebrates

Effect of pifithrin- α on limb regeneration. (A & E) Controls treated daily with DMSO. (B-D & F-G) Pifithrin- α treated animals (5 μ M pifithrin- α , added freshly diluted everyday). Limbs in panels A-D were amputated distally in the middle of the zeugopod and limbs in panels E-G were amputated proximally through the middle of the stylopod (see dotted lines in panels A & E for amputation levels).

BMC Evolutionary Biology 2007, 7:180

Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer Éric Villiard1, Henner Brinkmann1, Olga Moiseeva1, Frédérick A Mallette1, Gerardo Ferbeyre*1 and Stéphane Roy*1,2

University of Dundee, Ninewells hospital, Jacqui Wood Cancer Centre, Dundee Cancer Centre

- Kenneth Fernandes
- Marie Khoury
- Alexandra Diot
- Sylvanie Surget
- Sebastien Jo
- Valerie Meuray

Former team members

- Virginie Marcel
- Olivier Terrier
- Mustapha Aoubala
- Alice Machado da Silva
- Hayley Moore (PhD)
- Hugo Bernard (PhD)
- Fiona Murray-Zmijewski (PhD)
- Surgeons
 - Alastair Thompson
 - Robert Steele

Collaborations

- David Lane (A-star, Singapore))
- Curtis Harris (NIH, Washington)
- Bjorn Gjertsen (Bergen Hospital, Norway)
- Gerry Zambetti (St Jude Children Hospital, Memphis)
- Grahame Hardie (University of Dundee)
- Borek Vojtesek (University of Brno, Czech Rep.)
- Franck Toledo (Institut Curie, France)
- Pierre Roux (CNRS Montpellier, France)
- Herve Bonnefoi (Hospital Bergonie, Bordeaux, France)

researching the cure

